P4J


NameP4J JSON
Version 1.1.2 PyPI version JSON
download
home_pageNone
SummaryPeriodic light curve analysis tools based on Information Theory
upload_time2024-05-24 20:55:48
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords astronomy time series period estimation information theory
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # P4J

## Description

P4J is a python package for period detection on irregularly sampled and heteroscedastic time series based on *Information Theoretic* objective functions. P4J was developed for astronomical light curves, irregularly sampled time series of stellar magnitude or flux. The core of this package is a class called periodogram that sweeps an array of periods/frequencies looking for the one that maximizes a given criterion. The main contribution of this work is a criterion for period detection based on the maximization of Cauchy-Schwarz Quadratic Mutual Information (Huijse et al., 2017). Information theoretic criteria incorporate information on the whole probability density function of the process and are more robust than classical second-order statistics based criteria (Principe, 2010). For comparison P4J also incorporates other period detection methods used in astronomy such as the Phase Dispersion Minimization periodogram (Stellingwerf, 1973), Lafler-Kinman's string length (Clarke, 2002) and the Orthogonal multiharmonic AoV periodogram (Schwarzenberg-Czerny, 1996).

## Contents

-  Quadratic Mutual Information periodogram for light curves 
-  Phase Dispersion Minimization, String Length, and Analysis of variance periodograms
-  Basic synthetic light curve generator

## Instalation

Install from PyPI using:

    pip install P4J

or clone this github and from its root run:

    pip install --editable .

During installation, `c` sources are generated using `cython`. If you have a UNIX system the GCC compiler is most likely already installed. If you have a Windows system you may want to install the Microsoft Visual C++ (MSVC) compiler. You can find relevant information at: https://wiki.python.org/moin/WindowsCompilers.



## Example

Please review

    https://github.com/phuijse/P4J/blob/master/examples/periodogram_demo.ipynb

## Authors

-  Pablo Huijse pablo.huijse@gmail.com (Millennium Institute of Astrophysics and Universidad Austral de Chile)
-  Pavlos Protopapas (Harvard Institute of Applied Computational Sciences)
-  Pablo A. Estévez (Millennium Institute of Astrophysics and Universidad de Chile)
-  Pablo Zegers (Universidad de los Andes)
-  José C. Príncipe (University of Florida)

(P4J = Four Pablos and one Jose)

## Acknowledgment

We would like to thank the people of the Computational Intelligence laboratory @ UChile, Center for Mathematical Modeling @ Uchile, the Millennium Institute of Astrophysics (www.astrofisicamas.cl), LSST group @ University of Washington and the participants of the Harvard-Chile Data Science school (www.hcds.cl) for their comments and useful discussions. Pablo Huijse acknowledges financial support from FONDECYT through grant 1170305 and postdoctoral grant 3150460, and from the Chilean Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC12009, awarded to The Millennium Institute of Astrophysics, MAS. 

## References

1. José C. Príncipe, "Information Theoretic Learning: Renyi's Entropy and Kernel Perspectives", Springer, 2010
2. Pablo Huijse et al., "Robust period estimation using mutual information for multi-band light curves in the synoptic survey era", The Astrophysical Journal Supplement Series, vol. 236, n. 1, 2018, DOI: http://doi.org/10.3847/1538-4365/aab77c, http://arxiv.org/abs/1709.03541
3. Pavlos Protopapas et al., "A Novel, Fully Automated Pipeline for Period Estimation in the EROS 2 Data Set", The Astrophysical Journal Supplement, vol. 216, n. 2, 2015
4. Pablo Huijse et al., "Computational Intelligence Challenges and Applications on Large-Scale Astronomical Time Series Databases", IEEE Mag. Computational Intelligence, vol. 9, n. 3, pp. 27-39, 2014
5. Pablo Huijse et al., "An Information Theoretic Algorithm for Finding Periodicities in Stellar Light Curves", IEEE Trans. Signal Processing vol. 60, n. 10, pp. 5135-5145, 2012
6. Robert F. Stellingwerf, "Period determination using phase dispersion minimization", The Astrophysical Journal, vol. 224, pp. 953-960, 1978, http://adsabs.harvard.edu/abs/1978ApJ...224..953S
7. David Clarke, "String/Rope length methods using the Lafler-Kinman statistic", Astronomy & Astrophysics, vol. 386, n. 2, pp. 763-774, 2002, http://adsabs.harvard.edu/abs/2002A%26A...386..763C
8. Alex Schwarzenberg-Czerny "Fast and Statistically Optimal Period Search in Uneven Sampled Observations", Astrophysical Journal Letters, vol. 460, pp. 107, 1996, http://adsabs.harvard.edu/abs/1996ApJ...460L.107S

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "P4J",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "astronomy, time series, period estimation, information theory",
    "author": null,
    "author_email": "Pablo Huijse <pablo.huijse@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/22/dd/c6c6914919d4280d9122dbab81be48921790ad63af07ac46f23c92cf5337/p4j-1.1.2.tar.gz",
    "platform": null,
    "description": "# P4J\n\n## Description\n\nP4J is a python package for period detection on irregularly sampled and heteroscedastic time series based on *Information Theoretic* objective functions. P4J was developed for astronomical light curves, irregularly sampled time series of stellar magnitude or flux. The core of this package is a class called periodogram that sweeps an array of periods/frequencies looking for the one that maximizes a given criterion. The main contribution of this work is a criterion for period detection based on the maximization of Cauchy-Schwarz Quadratic Mutual Information (Huijse et al., 2017). Information theoretic criteria incorporate information on the whole probability density function of the process and are more robust than classical second-order statistics based criteria (Principe, 2010). For comparison P4J also incorporates other period detection methods used in astronomy such as the Phase Dispersion Minimization periodogram (Stellingwerf, 1973), Lafler-Kinman's string length (Clarke, 2002) and the Orthogonal multiharmonic AoV periodogram (Schwarzenberg-Czerny, 1996).\n\n## Contents\n\n-  Quadratic Mutual Information periodogram for light curves \n-  Phase Dispersion Minimization, String Length, and Analysis of variance periodograms\n-  Basic synthetic light curve generator\n\n## Instalation\n\nInstall from PyPI using:\n\n    pip install P4J\n\nor clone this github and from its root run:\n\n    pip install --editable .\n\nDuring installation, `c` sources are generated using `cython`. If you have a UNIX system the GCC compiler is most likely already installed. If you have a Windows system you may want to install the Microsoft Visual C++ (MSVC) compiler. You can find relevant information at: https://wiki.python.org/moin/WindowsCompilers.\n\n\n\n## Example\n\nPlease review\n\n    https://github.com/phuijse/P4J/blob/master/examples/periodogram_demo.ipynb\n\n## Authors\n\n-  Pablo Huijse pablo.huijse@gmail.com (Millennium Institute of Astrophysics and Universidad Austral de Chile)\n-  Pavlos Protopapas (Harvard Institute of Applied Computational Sciences)\n-  Pablo A. Est\u00e9vez (Millennium Institute of Astrophysics and Universidad de Chile)\n-  Pablo Zegers (Universidad de los Andes)\n-  Jos\u00e9 C. Pr\u00edncipe (University of Florida)\n\n(P4J = Four Pablos and one Jose)\n\n## Acknowledgment\n\nWe would like to thank the people of the Computational Intelligence laboratory @ UChile, Center for Mathematical Modeling @ Uchile, the Millennium Institute of Astrophysics (www.astrofisicamas.cl), LSST group @ University of Washington and the participants of the Harvard-Chile Data Science school (www.hcds.cl) for their comments and useful discussions. Pablo Huijse acknowledges financial support from FONDECYT through grant 1170305 and postdoctoral grant 3150460, and from the Chilean Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC12009, awarded to The Millennium Institute of Astrophysics, MAS. \n\n## References\n\n1. Jos\u00e9 C. Pr\u00edncipe, \"Information Theoretic Learning: Renyi's Entropy and Kernel Perspectives\", Springer, 2010\n2. Pablo Huijse et al., \"Robust period estimation using mutual information for multi-band light curves in the synoptic survey era\", The Astrophysical Journal Supplement Series, vol. 236, n. 1, 2018, DOI: http://doi.org/10.3847/1538-4365/aab77c, http://arxiv.org/abs/1709.03541\n3. Pavlos Protopapas et al., \"A Novel, Fully Automated Pipeline for Period Estimation in the EROS 2 Data Set\", The Astrophysical Journal Supplement, vol. 216, n. 2, 2015\n4. Pablo Huijse et al., \"Computational Intelligence Challenges and Applications on Large-Scale Astronomical Time Series Databases\", IEEE Mag. Computational Intelligence, vol. 9, n. 3, pp. 27-39, 2014\n5. Pablo Huijse et al., \"An Information Theoretic Algorithm for Finding Periodicities in Stellar Light Curves\", IEEE Trans. Signal Processing vol. 60, n. 10, pp. 5135-5145, 2012\n6. Robert F. Stellingwerf, \"Period determination using phase dispersion minimization\", The Astrophysical Journal, vol. 224, pp. 953-960, 1978, http://adsabs.harvard.edu/abs/1978ApJ...224..953S\n7. David Clarke, \"String/Rope length methods using the Lafler-Kinman statistic\", Astronomy & Astrophysics, vol. 386, n. 2, pp. 763-774, 2002, http://adsabs.harvard.edu/abs/2002A%26A...386..763C\n8. Alex Schwarzenberg-Czerny \"Fast and Statistically Optimal Period Search in Uneven Sampled Observations\", Astrophysical Journal Letters, vol. 460, pp. 107, 1996, http://adsabs.harvard.edu/abs/1996ApJ...460L.107S\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Periodic light curve analysis tools based on Information Theory",
    "version": "1.1.2",
    "project_urls": {
        "Homepage": "https://github.com/phuijse/P4J",
        "Repository": "https://github.com/phuijse/P4J"
    },
    "split_keywords": [
        "astronomy",
        " time series",
        " period estimation",
        " information theory"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ccceb87ed71b5ff96d204970e121b083a13c18e050c15e6e0607f728d8e1e28f",
                "md5": "0cc64653f1f8cd2d912f5ac0be351bf5",
                "sha256": "0b490c64b474bc950acd3090d6b1f4d79368e15bae4a9fdb1d1fd6a5f4f0bf90"
            },
            "downloads": -1,
            "filename": "P4J-1.1.2-cp38-cp38-manylinux_2_27_x86_64.whl",
            "has_sig": false,
            "md5_digest": "0cc64653f1f8cd2d912f5ac0be351bf5",
            "packagetype": "bdist_wheel",
            "python_version": "cp38",
            "requires_python": ">=3.8",
            "size": 1312612,
            "upload_time": "2024-05-24T20:55:46",
            "upload_time_iso_8601": "2024-05-24T20:55:46.562701Z",
            "url": "https://files.pythonhosted.org/packages/cc/ce/b87ed71b5ff96d204970e121b083a13c18e050c15e6e0607f728d8e1e28f/P4J-1.1.2-cp38-cp38-manylinux_2_27_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "22ddc6c6914919d4280d9122dbab81be48921790ad63af07ac46f23c92cf5337",
                "md5": "c9fd21b22a023957ccbacd73e33151b5",
                "sha256": "c22989df60c70ceb6a7547d495c32add3c540069c169446b9ef52bf2b92b3e47"
            },
            "downloads": -1,
            "filename": "p4j-1.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "c9fd21b22a023957ccbacd73e33151b5",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 748469,
            "upload_time": "2024-05-24T20:55:48",
            "upload_time_iso_8601": "2024-05-24T20:55:48.957609Z",
            "url": "https://files.pythonhosted.org/packages/22/dd/c6c6914919d4280d9122dbab81be48921790ad63af07ac46f23c92cf5337/p4j-1.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-24 20:55:48",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "phuijse",
    "github_project": "P4J",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "p4j"
}
        
Elapsed time: 1.85645s