PDNPR


NamePDNPR JSON
Version 0.1.1 PyPI version JSON
download
home_pageNone
SummaryTool to find allosteric route based on MD files
upload_time2024-09-14 06:14:50
maintainerNone
docs_urlNone
authorSpencer Wang
requires_python>=3.9
licenseNone
keywords python protein allosteric network shortest route windows mac linux
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# Protein Dynamic Network Pathway Runner (PDNPR)

PDNPR is a tool for visualizing protein dynamic network paths, combining libraries such as PyMOL, NetworkX and MDTraj to achieve trajectory extraction, network construction, path analysis and visualization from molecular dynamics.

<!-- ## Code get
```sh
git clone https://github.com/Spencer-JRWang/PDNPR
```

## Environment configuration

### Dependency package
Create and configure the required environment using Conda.


### Create Conda environment:
- Build environment
```sh
conda env create -f environment.yml
```

- Activate environment
```sh
conda activate PDNPR -->
<!-- ``` -->

## Run PDNPR
1. Call PDNPR:

- use PDNPR GUI
```python
from PDNPR import GUI
```

- use PDNPR package
```python
from PDNPR.PDNPR import pdnpr
pdnpr(step, start_AA, end_AA, edge_cutoff, md_file, pdb_file)
```

2. Set parameters
- On the GUI screen, enter the following parameters:
  - Step: retrieves the frame stride.
  - Start Amino Acid: indicates the start amino acid number.
  - End Amino Acid: indicates the number of the end amino acid.
  - Edge Cutoff: specifies the threshold of the edge weight.
  - Select file
  - Click the run button to select the Molecular Dynamics trajectory file (XTC file) and Protein structure file (PDB file).

- Run the task
  - The output area displays progress and information. 
  - The task consists of the following steps:
    - Extract frames
    - Generating network
    - Merge networks
    - Calculate the shortest path
    - Generate and save PyMOL images
  - View results
  - After completion of the task, the output area will display the information of the shortest path, save the image and pse file, and automatically open the generated image file.

<!-- ## Running example
## GUI
<p align="center">
  <img src="https://github.com/Spencer-JRWang/PDNPR/blob/main/Example/Output/run.png" alt="Figure_run" width="300" />
</p>

### Shortest route
```txt
shortest route: 915 -> 936 -> 935 -> 809 -> 808 -> 840 -> 841 -> 709 -> 708 -> 747 -> 743 -> 88
```

### PyMoL Figure
<p align="center">
  <img src="Example/Output/pymol_fig.png" alt="Figure_mol" width="500" />
</p>

## package
```python
from PDNPR import pdnpr
pdnpr(step, start_AA, end_AA, edge_cutoff, md_file, pdb_file)
``` -->

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "PDNPR",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "Python, Protein, allosteric, Network, Shortest route, windows, mac, linux",
    "author": "Spencer Wang",
    "author_email": "jrwangspencer@stu.suda.edu.cn",
    "download_url": "https://files.pythonhosted.org/packages/d0/47/e535076397b3dae7defa05bd86b9b248129a5d23e8127c663ece9e768555/pdnpr-0.1.1.tar.gz",
    "platform": null,
    "description": "\n# Protein Dynamic Network Pathway Runner (PDNPR)\n\nPDNPR is a tool for visualizing protein dynamic network paths, combining libraries such as PyMOL, NetworkX and MDTraj to achieve trajectory extraction, network construction, path analysis and visualization from molecular dynamics.\n\n<!-- ## Code get\n```sh\ngit clone https://github.com/Spencer-JRWang/PDNPR\n```\n\n## Environment configuration\n\n### Dependency package\nCreate and configure the required environment using Conda.\n\n\n### Create Conda environment:\n- Build environment\n```sh\nconda env create -f environment.yml\n```\n\n- Activate environment\n```sh\nconda activate PDNPR -->\n<!-- ``` -->\n\n## Run PDNPR\n1. Call PDNPR:\n\n- use PDNPR GUI\n```python\nfrom PDNPR import GUI\n```\n\n- use PDNPR package\n```python\nfrom PDNPR.PDNPR import pdnpr\npdnpr(step, start_AA, end_AA, edge_cutoff, md_file, pdb_file)\n```\n\n2. Set parameters\n- On the GUI screen, enter the following parameters:\n  - Step: retrieves the frame stride.\n  - Start Amino Acid: indicates the start amino acid number.\n  - End Amino Acid: indicates the number of the end amino acid.\n  - Edge Cutoff: specifies the threshold of the edge weight.\n  - Select file\n  - Click the run button to select the Molecular Dynamics trajectory file (XTC file) and Protein structure file (PDB file).\n\n- Run the task\n  - The output area displays progress and information. \n  - The task consists of the following steps:\n    - Extract frames\n    - Generating network\n    - Merge networks\n    - Calculate the shortest path\n    - Generate and save PyMOL images\n  - View results\n  - After completion of the task, the output area will display the information of the shortest path, save the image and pse file, and automatically open the generated image file.\n\n<!-- ## Running example\n## GUI\n<p align=\"center\">\n  <img src=\"https://github.com/Spencer-JRWang/PDNPR/blob/main/Example/Output/run.png\" alt=\"Figure_run\" width=\"300\" />\n</p>\n\n### Shortest route\n```txt\nshortest route: 915 -> 936 -> 935 -> 809 -> 808 -> 840 -> 841 -> 709 -> 708 -> 747 -> 743 -> 88\n```\n\n### PyMoL Figure\n<p align=\"center\">\n  <img src=\"Example/Output/pymol_fig.png\" alt=\"Figure_mol\" width=\"500\" />\n</p>\n\n## package\n```python\nfrom PDNPR import pdnpr\npdnpr(step, start_AA, end_AA, edge_cutoff, md_file, pdb_file)\n``` -->\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Tool to find allosteric route based on MD files",
    "version": "0.1.1",
    "project_urls": null,
    "split_keywords": [
        "python",
        " protein",
        " allosteric",
        " network",
        " shortest route",
        " windows",
        " mac",
        " linux"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d047e535076397b3dae7defa05bd86b9b248129a5d23e8127c663ece9e768555",
                "md5": "650e8209c115b0b2b77407266e20d422",
                "sha256": "d01ff24a9c23027c50d46f31277fcf5c78700b7fbece86781d14665450098d5f"
            },
            "downloads": -1,
            "filename": "pdnpr-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "650e8209c115b0b2b77407266e20d422",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 23094,
            "upload_time": "2024-09-14T06:14:50",
            "upload_time_iso_8601": "2024-09-14T06:14:50.070649Z",
            "url": "https://files.pythonhosted.org/packages/d0/47/e535076397b3dae7defa05bd86b9b248129a5d23e8127c663ece9e768555/pdnpr-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-14 06:14:50",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "pdnpr"
}
        
Elapsed time: 0.31447s