# Protein Dynamic Network Pathway Runner (PDNPR)
PDNPR is a tool for visualizing protein dynamic network paths, combining libraries such as PyMOL, NetworkX and MDTraj to achieve trajectory extraction, network construction, path analysis and visualization from molecular dynamics.
<!-- ## Code get
```sh
git clone https://github.com/Spencer-JRWang/PDNPR
```
## Environment configuration
### Dependency package
Create and configure the required environment using Conda.
### Create Conda environment:
- Build environment
```sh
conda env create -f environment.yml
```
- Activate environment
```sh
conda activate PDNPR -->
<!-- ``` -->
## Run PDNPR
1. Call PDNPR:
- use PDNPR GUI
```python
from PDNPR import GUI
```
- use PDNPR package
```python
from PDNPR.PDNPR import pdnpr
pdnpr(step, start_AA, end_AA, edge_cutoff, md_file, pdb_file)
```
2. Set parameters
- On the GUI screen, enter the following parameters:
- Step: retrieves the frame stride.
- Start Amino Acid: indicates the start amino acid number.
- End Amino Acid: indicates the number of the end amino acid.
- Edge Cutoff: specifies the threshold of the edge weight.
- Select file
- Click the run button to select the Molecular Dynamics trajectory file (XTC file) and Protein structure file (PDB file).
- Run the task
- The output area displays progress and information.
- The task consists of the following steps:
- Extract frames
- Generating network
- Merge networks
- Calculate the shortest path
- Generate and save PyMOL images
- View results
- After completion of the task, the output area will display the information of the shortest path, save the image and pse file, and automatically open the generated image file.
<!-- ## Running example
## GUI
<p align="center">
<img src="https://github.com/Spencer-JRWang/PDNPR/blob/main/Example/Output/run.png" alt="Figure_run" width="300" />
</p>
### Shortest route
```txt
shortest route: 915 -> 936 -> 935 -> 809 -> 808 -> 840 -> 841 -> 709 -> 708 -> 747 -> 743 -> 88
```
### PyMoL Figure
<p align="center">
<img src="Example/Output/pymol_fig.png" alt="Figure_mol" width="500" />
</p>
## package
```python
from PDNPR import pdnpr
pdnpr(step, start_AA, end_AA, edge_cutoff, md_file, pdb_file)
``` -->
Raw data
{
"_id": null,
"home_page": null,
"name": "PDNPR",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "Python, Protein, allosteric, Network, Shortest route, windows, mac, linux",
"author": "Spencer Wang",
"author_email": "jrwangspencer@stu.suda.edu.cn",
"download_url": "https://files.pythonhosted.org/packages/d0/47/e535076397b3dae7defa05bd86b9b248129a5d23e8127c663ece9e768555/pdnpr-0.1.1.tar.gz",
"platform": null,
"description": "\n# Protein Dynamic Network Pathway Runner (PDNPR)\n\nPDNPR is a tool for visualizing protein dynamic network paths, combining libraries such as PyMOL, NetworkX and MDTraj to achieve trajectory extraction, network construction, path analysis and visualization from molecular dynamics.\n\n<!-- ## Code get\n```sh\ngit clone https://github.com/Spencer-JRWang/PDNPR\n```\n\n## Environment configuration\n\n### Dependency package\nCreate and configure the required environment using Conda.\n\n\n### Create Conda environment:\n- Build environment\n```sh\nconda env create -f environment.yml\n```\n\n- Activate environment\n```sh\nconda activate PDNPR -->\n<!-- ``` -->\n\n## Run PDNPR\n1. Call PDNPR:\n\n- use PDNPR GUI\n```python\nfrom PDNPR import GUI\n```\n\n- use PDNPR package\n```python\nfrom PDNPR.PDNPR import pdnpr\npdnpr(step, start_AA, end_AA, edge_cutoff, md_file, pdb_file)\n```\n\n2. Set parameters\n- On the GUI screen, enter the following parameters:\n - Step: retrieves the frame stride.\n - Start Amino Acid: indicates the start amino acid number.\n - End Amino Acid: indicates the number of the end amino acid.\n - Edge Cutoff: specifies the threshold of the edge weight.\n - Select file\n - Click the run button to select the Molecular Dynamics trajectory file (XTC file) and Protein structure file (PDB file).\n\n- Run the task\n - The output area displays progress and information. \n - The task consists of the following steps:\n - Extract frames\n - Generating network\n - Merge networks\n - Calculate the shortest path\n - Generate and save PyMOL images\n - View results\n - After completion of the task, the output area will display the information of the shortest path, save the image and pse file, and automatically open the generated image file.\n\n<!-- ## Running example\n## GUI\n<p align=\"center\">\n <img src=\"https://github.com/Spencer-JRWang/PDNPR/blob/main/Example/Output/run.png\" alt=\"Figure_run\" width=\"300\" />\n</p>\n\n### Shortest route\n```txt\nshortest route: 915 -> 936 -> 935 -> 809 -> 808 -> 840 -> 841 -> 709 -> 708 -> 747 -> 743 -> 88\n```\n\n### PyMoL Figure\n<p align=\"center\">\n <img src=\"Example/Output/pymol_fig.png\" alt=\"Figure_mol\" width=\"500\" />\n</p>\n\n## package\n```python\nfrom PDNPR import pdnpr\npdnpr(step, start_AA, end_AA, edge_cutoff, md_file, pdb_file)\n``` -->\n",
"bugtrack_url": null,
"license": null,
"summary": "Tool to find allosteric route based on MD files",
"version": "0.1.1",
"project_urls": null,
"split_keywords": [
"python",
" protein",
" allosteric",
" network",
" shortest route",
" windows",
" mac",
" linux"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d047e535076397b3dae7defa05bd86b9b248129a5d23e8127c663ece9e768555",
"md5": "650e8209c115b0b2b77407266e20d422",
"sha256": "d01ff24a9c23027c50d46f31277fcf5c78700b7fbece86781d14665450098d5f"
},
"downloads": -1,
"filename": "pdnpr-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "650e8209c115b0b2b77407266e20d422",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 23094,
"upload_time": "2024-09-14T06:14:50",
"upload_time_iso_8601": "2024-09-14T06:14:50.070649Z",
"url": "https://files.pythonhosted.org/packages/d0/47/e535076397b3dae7defa05bd86b9b248129a5d23e8127c663ece9e768555/pdnpr-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-14 06:14:50",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "pdnpr"
}