# Multiclass pixel classifier
Deep learning segmentation method with very low annotation requirement.
Similar to [Ilastik pixel classification](https://www.ilastik.org/documentation/pixelclassification/pixelclassification) procedure, but based on a deep neural network.
Described and used in the work [Near-infrared co-illumination of fluorescent proteins reduces photobleaching and phototoxicity](https://doi.org/10.1038/s41587-023-01893-7). Please cite this work when using this method.
Docuementation: see this [tutorial](https://github.com/jeanollion/bacmman/wiki/Train-and-use-PixMClass)
Raw data
{
"_id": null,
"home_page": "https://github.com/jeanollion/pix_mclass",
"name": "PixMClass",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3",
"maintainer_email": null,
"keywords": "Segmentation, Classification, Microscopy, Cell",
"author": "Jean Ollion",
"author_email": "jean.ollion@polytechnique.org",
"download_url": "https://files.pythonhosted.org/packages/4e/41/99fd98f6bcc0fd83158debef233e83a9184ff87d7ed0cade234f55036782/pixmclass-0.1.2.tar.gz",
"platform": null,
"description": "# Multiclass pixel classifier\nDeep learning segmentation method with very low annotation requirement.\n\nSimilar to [Ilastik pixel classification](https://www.ilastik.org/documentation/pixelclassification/pixelclassification) procedure, but based on a deep neural network.\n\nDescribed and used in the work [Near-infrared co-illumination of fluorescent proteins reduces photobleaching and phototoxicity](https://doi.org/10.1038/s41587-023-01893-7). Please cite this work when using this method. \n\nDocuementation: see this [tutorial](https://github.com/jeanollion/bacmman/wiki/Train-and-use-PixMClass)\n",
"bugtrack_url": null,
"license": null,
"summary": "Multiclass pixel classification",
"version": "0.1.2",
"project_urls": {
"Download": "https://github.com/jeanollion/pix_mclass/releases/download/v0.1.2/pix_mclass-0.1.2.tar.gz",
"Homepage": "https://github.com/jeanollion/pix_mclass"
},
"split_keywords": [
"segmentation",
" classification",
" microscopy",
" cell"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "f9a6edb37e99fd9b6d958b5ac1f6ecf345f0ea780596c2e1672957f6f023bb09",
"md5": "c70e18b789be980de21f68c2335541e6",
"sha256": "6ef982e4746631b258b7bb2d97aefe375fa115e8ed21a6c958ee5bd074df5280"
},
"downloads": -1,
"filename": "PixMClass-0.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c70e18b789be980de21f68c2335541e6",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3",
"size": 9932,
"upload_time": "2024-05-22T20:39:55",
"upload_time_iso_8601": "2024-05-22T20:39:55.413134Z",
"url": "https://files.pythonhosted.org/packages/f9/a6/edb37e99fd9b6d958b5ac1f6ecf345f0ea780596c2e1672957f6f023bb09/PixMClass-0.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4e4199fd98f6bcc0fd83158debef233e83a9184ff87d7ed0cade234f55036782",
"md5": "f17d153d9d214692bce0aba116e76f87",
"sha256": "733cc8a07c0d4060ed777cc167d8478fffcb9c658a128a3db0f71db12452f0a8"
},
"downloads": -1,
"filename": "pixmclass-0.1.2.tar.gz",
"has_sig": false,
"md5_digest": "f17d153d9d214692bce0aba116e76f87",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3",
"size": 9102,
"upload_time": "2024-05-22T20:39:58",
"upload_time_iso_8601": "2024-05-22T20:39:58.371705Z",
"url": "https://files.pythonhosted.org/packages/4e/41/99fd98f6bcc0fd83158debef233e83a9184ff87d7ed0cade234f55036782/pixmclass-0.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-05-22 20:39:58",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "jeanollion",
"github_project": "pix_mclass",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "pixmclass"
}