Pratik-model


NamePratik-model JSON
Version 0.1.6 PyPI version JSON
download
home_pageNone
SummaryThis package directly gives you output performance on 12 different algorithms
upload_time2024-11-16 17:25:43
maintainerNone
docs_urlNone
authorpratik
requires_pythonNone
licenseMIT
keywords pratik_model
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Pratik_model
- The best thing about this package is that you do not have to train and predict every classification or regression algorithm to check performance.
- This package directly gives you output performance on 13 different algorithms.

How to use it  - 
For Classification
x= Independent variables
y= Dependent variables

* From Pratik_model import smart_classifier
* model = smart_classifier(x,y)
* model.accuracy_score()
* model.classification_report()
* model.confusion_matrix()
* model.cross_validation()
* model.mean_absolute_error()
* model.precision_score()
* model.recall_score()
* model.mean_absolute_error()
* model.mean_absolute_error()
* model.mean_squared_error()
* model.cross_validation()

For Regression -

* From Pratik_model import smart_regressor
* model=smart_regressor(x,y)
* model.r2_score()
* model.mean_absolute_error()
* model.mean_absolute_error()
* model.mean_squared_error()
* model.cross_validation()
* model.overfitting()

Check Pratik_Model_Package.ipynb file on Github for practical code.

Pratik_model for Classification: 
It will check the performance on this Classification models:
- Passive Aggressive Classifier
- Decision Tree Classifier
- Random Forest Classifier
- Extra Trees Classifier
- Logistic Regression
- Ridge Classifier
- K Neighbors Classifier
- Support Vector Classification
- Naive Bayes Classifier
- LGBM Classifier
- CatBoost Classifier
- XGB Classifier

And for classification problems Pratik_model can give the output of:
- Accuracy Score.
- Classification Report
- Confusion Matrix
- Cross validation (Cross validation score)
- Mean Absolute Error
- Mean Squared Error
- Overfitting (will give accuracy of training and testing data.)
- Precision Score
- Recall Score

Pratik_model for Regression: 
Similarly, It will check performance on this Regression model:
- Passive Aggressive Regressor
- Gradient Boosting Regressor
- Decision Tree Regressor
- Random Forest Regressor
- Extra Trees Regressor
- Lasso Regression
- K Neighbors Regressor
- Linear Regression
- Support Vector Regression
- LGBM Regressor
- CatBoost Regressor
- XGB Regressor

And for Regression problem Pratik_model
can give an output of:
- R2 Score.
- Cross validation (Cross validation score)
- Mean Absolute Error
- Mean Squared Error
- Overfitting (will give accuracy of training and testing data.)


First Release
0.0.7 (29/3/2022)

Thank You!!.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "Pratik-model",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "Pratik_model",
    "author": "pratik",
    "author_email": "pratikvdatey@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/30/7f/cbfa93aee4725106505a2b6aadafb0e63b8fb6449d667152af98974c2d07/Pratik_model-0.1.6.tar.gz",
    "platform": null,
    "description": "Pratik_model\r\n- The best thing about this package is that you do not have to train and predict every classification or regression algorithm to check performance.\r\n- This package directly gives you output performance on 13 different algorithms.\r\n\r\nHow to use it  - \r\nFor Classification\r\nx= Independent variables\r\ny= Dependent variables\r\n\r\n* From Pratik_model import smart_classifier\r\n* model = smart_classifier(x,y)\r\n* model.accuracy_score()\r\n* model.classification_report()\r\n* model.confusion_matrix()\r\n* model.cross_validation()\r\n* model.mean_absolute_error()\r\n* model.precision_score()\r\n* model.recall_score()\r\n* model.mean_absolute_error()\r\n* model.mean_absolute_error()\r\n* model.mean_squared_error()\r\n* model.cross_validation()\r\n\r\nFor Regression -\r\n\r\n* From Pratik_model import smart_regressor\r\n* model=smart_regressor(x,y)\r\n* model.r2_score()\r\n* model.mean_absolute_error()\r\n* model.mean_absolute_error()\r\n* model.mean_squared_error()\r\n* model.cross_validation()\r\n* model.overfitting()\r\n\r\nCheck Pratik_Model_Package.ipynb file on Github for practical code.\r\n\r\nPratik_model for Classification: \r\nIt will check the performance on this Classification models:\r\n- Passive Aggressive Classifier\r\n- Decision Tree Classifier\r\n- Random Forest Classifier\r\n- Extra Trees Classifier\r\n- Logistic Regression\r\n- Ridge Classifier\r\n- K Neighbors Classifier\r\n- Support Vector Classification\r\n- Naive Bayes Classifier\r\n- LGBM Classifier\r\n- CatBoost Classifier\r\n- XGB Classifier\r\n\r\nAnd for classification problems Pratik_model can give the output of:\r\n- Accuracy Score.\r\n- Classification Report\r\n- Confusion Matrix\r\n- Cross validation (Cross validation score)\r\n- Mean Absolute Error\r\n- Mean Squared Error\r\n- Overfitting (will give accuracy of training and testing data.)\r\n- Precision Score\r\n- Recall Score\r\n\r\nPratik_model for Regression: \r\nSimilarly, It will check performance on this Regression model:\r\n- Passive Aggressive Regressor\r\n- Gradient Boosting Regressor\r\n- Decision Tree Regressor\r\n- Random Forest Regressor\r\n- Extra Trees Regressor\r\n- Lasso Regression\r\n- K Neighbors Regressor\r\n- Linear Regression\r\n- Support Vector Regression\r\n- LGBM Regressor\r\n- CatBoost Regressor\r\n- XGB Regressor\r\n\r\nAnd for Regression problem Pratik_model\r\ncan give an output of:\r\n- R2 Score.\r\n- Cross validation (Cross validation score)\r\n- Mean Absolute Error\r\n- Mean Squared Error\r\n- Overfitting (will give accuracy of training and testing data.)\r\n\r\n\r\nFirst Release\r\n0.0.7 (29/3/2022)\r\n\r\nThank You!!.\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "This package directly gives you output performance on 12 different algorithms",
    "version": "0.1.6",
    "project_urls": {
        "source_code": "https://github.com/pratikdatey/Pratik_model"
    },
    "split_keywords": [
        "pratik_model"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "79d281b6f46333302814497e66abe0b7407375efce19ece7b859640468e69033",
                "md5": "dcf81447e4a4bad8de8bbcb3a625a773",
                "sha256": "fb625fcbdf08716cc80ce69f315f6c4cb1f1e569c5ba195fb1735df0f5c4dea1"
            },
            "downloads": -1,
            "filename": "Pratik_model-0.1.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "dcf81447e4a4bad8de8bbcb3a625a773",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 16436,
            "upload_time": "2024-11-16T17:25:41",
            "upload_time_iso_8601": "2024-11-16T17:25:41.818774Z",
            "url": "https://files.pythonhosted.org/packages/79/d2/81b6f46333302814497e66abe0b7407375efce19ece7b859640468e69033/Pratik_model-0.1.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "307fcbfa93aee4725106505a2b6aadafb0e63b8fb6449d667152af98974c2d07",
                "md5": "301329e6cb2e558b3994d2d81c5243de",
                "sha256": "deb92930b3166a907d49390692867b01fc7fc583acd4ba15b50da22eec15b513"
            },
            "downloads": -1,
            "filename": "Pratik_model-0.1.6.tar.gz",
            "has_sig": false,
            "md5_digest": "301329e6cb2e558b3994d2d81c5243de",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 16246,
            "upload_time": "2024-11-16T17:25:43",
            "upload_time_iso_8601": "2024-11-16T17:25:43.489598Z",
            "url": "https://files.pythonhosted.org/packages/30/7f/cbfa93aee4725106505a2b6aadafb0e63b8fb6449d667152af98974c2d07/Pratik_model-0.1.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-16 17:25:43",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pratikdatey",
    "github_project": "Pratik_model",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "pratik-model"
}
        
Elapsed time: 0.58506s