Name | Pratik-model JSON |
Version |
0.1.6
JSON |
| download |
home_page | None |
Summary | This package directly gives you output performance on 12 different algorithms |
upload_time | 2024-11-16 17:25:43 |
maintainer | None |
docs_url | None |
author | pratik |
requires_python | None |
license | MIT |
keywords |
pratik_model
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
Pratik_model
- The best thing about this package is that you do not have to train and predict every classification or regression algorithm to check performance.
- This package directly gives you output performance on 13 different algorithms.
How to use it -
For Classification
x= Independent variables
y= Dependent variables
* From Pratik_model import smart_classifier
* model = smart_classifier(x,y)
* model.accuracy_score()
* model.classification_report()
* model.confusion_matrix()
* model.cross_validation()
* model.mean_absolute_error()
* model.precision_score()
* model.recall_score()
* model.mean_absolute_error()
* model.mean_absolute_error()
* model.mean_squared_error()
* model.cross_validation()
For Regression -
* From Pratik_model import smart_regressor
* model=smart_regressor(x,y)
* model.r2_score()
* model.mean_absolute_error()
* model.mean_absolute_error()
* model.mean_squared_error()
* model.cross_validation()
* model.overfitting()
Check Pratik_Model_Package.ipynb file on Github for practical code.
Pratik_model for Classification:
It will check the performance on this Classification models:
- Passive Aggressive Classifier
- Decision Tree Classifier
- Random Forest Classifier
- Extra Trees Classifier
- Logistic Regression
- Ridge Classifier
- K Neighbors Classifier
- Support Vector Classification
- Naive Bayes Classifier
- LGBM Classifier
- CatBoost Classifier
- XGB Classifier
And for classification problems Pratik_model can give the output of:
- Accuracy Score.
- Classification Report
- Confusion Matrix
- Cross validation (Cross validation score)
- Mean Absolute Error
- Mean Squared Error
- Overfitting (will give accuracy of training and testing data.)
- Precision Score
- Recall Score
Pratik_model for Regression:
Similarly, It will check performance on this Regression model:
- Passive Aggressive Regressor
- Gradient Boosting Regressor
- Decision Tree Regressor
- Random Forest Regressor
- Extra Trees Regressor
- Lasso Regression
- K Neighbors Regressor
- Linear Regression
- Support Vector Regression
- LGBM Regressor
- CatBoost Regressor
- XGB Regressor
And for Regression problem Pratik_model
can give an output of:
- R2 Score.
- Cross validation (Cross validation score)
- Mean Absolute Error
- Mean Squared Error
- Overfitting (will give accuracy of training and testing data.)
First Release
0.0.7 (29/3/2022)
Thank You!!.
Raw data
{
"_id": null,
"home_page": null,
"name": "Pratik-model",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "Pratik_model",
"author": "pratik",
"author_email": "pratikvdatey@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/30/7f/cbfa93aee4725106505a2b6aadafb0e63b8fb6449d667152af98974c2d07/Pratik_model-0.1.6.tar.gz",
"platform": null,
"description": "Pratik_model\r\n- The best thing about this package is that you do not have to train and predict every classification or regression algorithm to check performance.\r\n- This package directly gives you output performance on 13 different algorithms.\r\n\r\nHow to use it - \r\nFor Classification\r\nx= Independent variables\r\ny= Dependent variables\r\n\r\n* From Pratik_model import smart_classifier\r\n* model = smart_classifier(x,y)\r\n* model.accuracy_score()\r\n* model.classification_report()\r\n* model.confusion_matrix()\r\n* model.cross_validation()\r\n* model.mean_absolute_error()\r\n* model.precision_score()\r\n* model.recall_score()\r\n* model.mean_absolute_error()\r\n* model.mean_absolute_error()\r\n* model.mean_squared_error()\r\n* model.cross_validation()\r\n\r\nFor Regression -\r\n\r\n* From Pratik_model import smart_regressor\r\n* model=smart_regressor(x,y)\r\n* model.r2_score()\r\n* model.mean_absolute_error()\r\n* model.mean_absolute_error()\r\n* model.mean_squared_error()\r\n* model.cross_validation()\r\n* model.overfitting()\r\n\r\nCheck Pratik_Model_Package.ipynb file on Github for practical code.\r\n\r\nPratik_model for Classification: \r\nIt will check the performance on this Classification models:\r\n- Passive Aggressive Classifier\r\n- Decision Tree Classifier\r\n- Random Forest Classifier\r\n- Extra Trees Classifier\r\n- Logistic Regression\r\n- Ridge Classifier\r\n- K Neighbors Classifier\r\n- Support Vector Classification\r\n- Naive Bayes Classifier\r\n- LGBM Classifier\r\n- CatBoost Classifier\r\n- XGB Classifier\r\n\r\nAnd for classification problems Pratik_model can give the output of:\r\n- Accuracy Score.\r\n- Classification Report\r\n- Confusion Matrix\r\n- Cross validation (Cross validation score)\r\n- Mean Absolute Error\r\n- Mean Squared Error\r\n- Overfitting (will give accuracy of training and testing data.)\r\n- Precision Score\r\n- Recall Score\r\n\r\nPratik_model for Regression: \r\nSimilarly, It will check performance on this Regression model:\r\n- Passive Aggressive Regressor\r\n- Gradient Boosting Regressor\r\n- Decision Tree Regressor\r\n- Random Forest Regressor\r\n- Extra Trees Regressor\r\n- Lasso Regression\r\n- K Neighbors Regressor\r\n- Linear Regression\r\n- Support Vector Regression\r\n- LGBM Regressor\r\n- CatBoost Regressor\r\n- XGB Regressor\r\n\r\nAnd for Regression problem Pratik_model\r\ncan give an output of:\r\n- R2 Score.\r\n- Cross validation (Cross validation score)\r\n- Mean Absolute Error\r\n- Mean Squared Error\r\n- Overfitting (will give accuracy of training and testing data.)\r\n\r\n\r\nFirst Release\r\n0.0.7 (29/3/2022)\r\n\r\nThank You!!.\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "This package directly gives you output performance on 12 different algorithms",
"version": "0.1.6",
"project_urls": {
"source_code": "https://github.com/pratikdatey/Pratik_model"
},
"split_keywords": [
"pratik_model"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "79d281b6f46333302814497e66abe0b7407375efce19ece7b859640468e69033",
"md5": "dcf81447e4a4bad8de8bbcb3a625a773",
"sha256": "fb625fcbdf08716cc80ce69f315f6c4cb1f1e569c5ba195fb1735df0f5c4dea1"
},
"downloads": -1,
"filename": "Pratik_model-0.1.6-py3-none-any.whl",
"has_sig": false,
"md5_digest": "dcf81447e4a4bad8de8bbcb3a625a773",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 16436,
"upload_time": "2024-11-16T17:25:41",
"upload_time_iso_8601": "2024-11-16T17:25:41.818774Z",
"url": "https://files.pythonhosted.org/packages/79/d2/81b6f46333302814497e66abe0b7407375efce19ece7b859640468e69033/Pratik_model-0.1.6-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "307fcbfa93aee4725106505a2b6aadafb0e63b8fb6449d667152af98974c2d07",
"md5": "301329e6cb2e558b3994d2d81c5243de",
"sha256": "deb92930b3166a907d49390692867b01fc7fc583acd4ba15b50da22eec15b513"
},
"downloads": -1,
"filename": "Pratik_model-0.1.6.tar.gz",
"has_sig": false,
"md5_digest": "301329e6cb2e558b3994d2d81c5243de",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 16246,
"upload_time": "2024-11-16T17:25:43",
"upload_time_iso_8601": "2024-11-16T17:25:43.489598Z",
"url": "https://files.pythonhosted.org/packages/30/7f/cbfa93aee4725106505a2b6aadafb0e63b8fb6449d667152af98974c2d07/Pratik_model-0.1.6.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-16 17:25:43",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pratikdatey",
"github_project": "Pratik_model",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "pratik-model"
}