ProphetLite


NameProphetLite JSON
Version 0.0.2 PyPI version JSON
download
home_pagehttps://github.com/tblume1992/ProphetLite
SummaryLike Prophet but using Numba and LASSO.
upload_time2023-05-29 22:44:29
maintainer
docs_urlNone
authorTyler Blume
requires_python
license
keywords forecasting time series seasonality trend
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ProphetLite
 Like Prophet but in numba and all fit with LASSO

## A basic comparison vs Prophet:
```
import pandas as pd
import matplotlib.pyplot as plt
from prophet import Prophet


df = pd.read_csv('https://raw.githubusercontent.com/facebook/prophet/main/examples/example_wp_log_peyton_manning.csv')
m = Prophet(weekly_seasonality=False)
m.fit(df, )
future = m.make_future_dataframe(periods=365)
forecast = m.predict(future)
m.plot(forecast)
m.plot_components(forecast)
plt.show()
```
## Now for ProphetLite
 You must pass your data as a numpy array
```
    y = df['y'].values
```
 Now to build the class and pass the seasonality
```
from ProphetLite.prophetlite import ProphetLite 


pl = ProphetLite()
fitted = pl.fit(y, [365.25]) #To pass multiple seasonalities just add more nu
predicted = pl.predict(365)
```
 Some Plotting helper methods
```
    pl.plot()
```
```
    pl.plot_components()
```
## Comparison Plots
```
    plt.plot(np.append(fitted['yhat'], predicted['yhat']), alpha=.3)
    plt.plot(forecast['yhat'], alpha=.3)
    plt.show()
```
The Trend Components:
```
    plt.plot(np.append(fitted['trend'], predicted['trend']))
    plt.plot(forecast['trend'])
    plt.show()
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/tblume1992/ProphetLite",
    "name": "ProphetLite",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "forecasting,time series,seasonality,trend",
    "author": "Tyler Blume",
    "author_email": "tblume@mail.USF.edu",
    "download_url": "",
    "platform": null,
    "description": "# ProphetLite\n Like Prophet but in numba and all fit with LASSO\n\n## A basic comparison vs Prophet:\n```\nimport pandas as pd\nimport matplotlib.pyplot as plt\nfrom prophet import Prophet\n\n\ndf = pd.read_csv('https://raw.githubusercontent.com/facebook/prophet/main/examples/example_wp_log_peyton_manning.csv')\nm = Prophet(weekly_seasonality=False)\nm.fit(df, )\nfuture = m.make_future_dataframe(periods=365)\nforecast = m.predict(future)\nm.plot(forecast)\nm.plot_components(forecast)\nplt.show()\n```\n## Now for ProphetLite\n You must pass your data as a numpy array\n```\n    y = df['y'].values\n```\n Now to build the class and pass the seasonality\n```\nfrom ProphetLite.prophetlite import ProphetLite \n\n\npl = ProphetLite()\nfitted = pl.fit(y, [365.25]) #To pass multiple seasonalities just add more nu\npredicted = pl.predict(365)\n```\n Some Plotting helper methods\n```\n    pl.plot()\n```\n```\n    pl.plot_components()\n```\n## Comparison Plots\n```\n    plt.plot(np.append(fitted['yhat'], predicted['yhat']), alpha=.3)\n    plt.plot(forecast['yhat'], alpha=.3)\n    plt.show()\n```\nThe Trend Components:\n```\n    plt.plot(np.append(fitted['trend'], predicted['trend']))\n    plt.plot(forecast['trend'])\n    plt.show()\n```\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Like Prophet but using Numba and LASSO.",
    "version": "0.0.2",
    "project_urls": {
        "Homepage": "https://github.com/tblume1992/ProphetLite"
    },
    "split_keywords": [
        "forecasting",
        "time series",
        "seasonality",
        "trend"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c00731416c20b92a9524f1bf4d82397d0dd11ed2f528114ff0804cc6fbaf08ff",
                "md5": "940e5815e45e022753c5c4891f3528a8",
                "sha256": "d6eb63536dd6efaf53be52ad23d4802a0c6c2b6d63a7e504422eb5437be4911d"
            },
            "downloads": -1,
            "filename": "ProphetLite-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "940e5815e45e022753c5c4891f3528a8",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 6531,
            "upload_time": "2023-05-29T22:44:29",
            "upload_time_iso_8601": "2023-05-29T22:44:29.455025Z",
            "url": "https://files.pythonhosted.org/packages/c0/07/31416c20b92a9524f1bf4d82397d0dd11ed2f528114ff0804cc6fbaf08ff/ProphetLite-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-05-29 22:44:29",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "tblume1992",
    "github_project": "ProphetLite",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "prophetlite"
}
        
Elapsed time: 0.23109s