# pubmed-zenbu
1. This tool collects literature data (title_only or title_and_abstract) of your interest.
2. This tool also extracts metadata from literature data using ChatGPT if you set the parameters.
## How to use
- `conda create -n pubmedzenbu python=3.9`
- Create a `config.yml`
```
# Sample config.yml
pubmed_search:
# (Required) NCBI API Key
ncbi_api_key: YOUR_NCBI_API_KEY
# (Required) Search query to obtain the PubMed articles of your interest
search_query: prime editing pig
# (Required) How far back in time you want to search.
search_oldest_year: 2010
# (Required) `title` or `abstract`. If choose `abstract`, it means you get the joined string of title and abstract.
which_text_to_use: title
openai:
# (Required) if use, add 'yes'. If not, keep it empty.
use_openai: yes
# (Optional) if use_openai is true, add your openai_api_key. Otherwise, keep it empty.
openai_api_key: YOUR_OPENAI_API_KEY
# (Optional) Prompt to ask ChatGPT. If you don't use it, keep it empty.
prompt: "extract gene and species from the following text \n"
# (Required) Set the output path. If use_openai is false, literature data will be written out.
output_path: ./extract_result_20231004.csv
```
- `pubmedzenbu PATH_TO_YOUR_config.yml_FILE`
Raw data
{
"_id": null,
"home_page": "https://github.com/dogrun-inc/pubmed-zenbu/tree/2023_dev_suzuki",
"name": "PubmedZenbu",
"maintainer": "Sora Yonezawa, Mitsuo Shintani, Naoya Oec, Takayuki Suzuki",
"docs_url": null,
"requires_python": "",
"maintainer_email": "oec@dogrun.jp",
"keywords": "pubmed scraping article dogrun",
"author": "Sora Yonezawa, Mitsuo Shintani, Naoya Oec, Takayuki Suzuki",
"author_email": "oec@dogrun.jp",
"download_url": "https://files.pythonhosted.org/packages/33/11/61f50dae798242904daa451ffa3af20e2e381390f68bc7cb6024083b5a86/PubmedZenbu-0.3.7.tar.gz",
"platform": null,
"description": "# pubmed-zenbu\n1. This tool collects literature data (title_only or title_and_abstract) of your interest.\n2. This tool also extracts metadata from literature data using ChatGPT if you set the parameters.\n\n## How to use \n- `conda create -n pubmedzenbu python=3.9`\n- Create a `config.yml` \n```\n# Sample config.yml\n\npubmed_search:\n # (Required) NCBI API Key\n ncbi_api_key: YOUR_NCBI_API_KEY\n # (Required) Search query to obtain the PubMed articles of your interest\n search_query: prime editing pig\n # (Required) How far back in time you want to search. \n search_oldest_year: 2010\n # (Required) `title` or `abstract`. If choose `abstract`, it means you get the joined string of title and abstract.\n which_text_to_use: title\nopenai:\n # (Required) if use, add 'yes'. If not, keep it empty.\n use_openai: yes\n # (Optional) if use_openai is true, add your openai_api_key. Otherwise, keep it empty.\n openai_api_key: YOUR_OPENAI_API_KEY\n # (Optional) Prompt to ask ChatGPT. If you don't use it, keep it empty.\n prompt: \"extract gene and species from the following text \\n\"\n # (Required) Set the output path. If use_openai is false, literature data will be written out.\n output_path: ./extract_result_20231004.csv\n```\n\n- `pubmedzenbu PATH_TO_YOUR_config.yml_FILE`\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "PubmedZenbu",
"version": "0.3.7",
"project_urls": {
"Download": "https://github.com/dogrun-inc/pubmed-zenbu/tree/2023_dev_suzuki",
"Homepage": "https://github.com/dogrun-inc/pubmed-zenbu/tree/2023_dev_suzuki"
},
"split_keywords": [
"pubmed",
"scraping",
"article",
"dogrun"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "2eb2f15e6e18478979bc8c067e9a7efe864c45ecfccf50e8ab7b8621df0a4d81",
"md5": "5c8a5cab34fc3d234e8abbc3308938be",
"sha256": "423a8a3d04af692d2c2b63f7e20a6d32d77dcad55aa888d6de5601106c6a0661"
},
"downloads": -1,
"filename": "PubmedZenbu-0.3.7-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5c8a5cab34fc3d234e8abbc3308938be",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 7585,
"upload_time": "2024-01-13T08:28:49",
"upload_time_iso_8601": "2024-01-13T08:28:49.917690Z",
"url": "https://files.pythonhosted.org/packages/2e/b2/f15e6e18478979bc8c067e9a7efe864c45ecfccf50e8ab7b8621df0a4d81/PubmedZenbu-0.3.7-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "331161f50dae798242904daa451ffa3af20e2e381390f68bc7cb6024083b5a86",
"md5": "eaec5891d7faf563c79b5363743f8cc9",
"sha256": "390593d3d896cb887d054e9a743f07a7f8cc101061eb16991e80e1253e5050d3"
},
"downloads": -1,
"filename": "PubmedZenbu-0.3.7.tar.gz",
"has_sig": false,
"md5_digest": "eaec5891d7faf563c79b5363743f8cc9",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 7087,
"upload_time": "2024-01-13T08:28:52",
"upload_time_iso_8601": "2024-01-13T08:28:52.995377Z",
"url": "https://files.pythonhosted.org/packages/33/11/61f50dae798242904daa451ffa3af20e2e381390f68bc7cb6024083b5a86/PubmedZenbu-0.3.7.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-01-13 08:28:52",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "dogrun-inc",
"github_project": "pubmed-zenbu",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "pubmedzenbu"
}