Py-BOBYQA


NamePy-BOBYQA JSON
Version 1.5.0 PyPI version JSON
download
home_pageNone
SummaryA flexible derivative-free solver for (bound constrained) general objective minimization
upload_time2024-09-16 03:52:32
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseGPL-3.0-or-later
keywords mathematics optimization derivative free optimization
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ====================================================================
Py-BOBYQA: Derivative-Free Solver for Bound-Constrained Minimization
====================================================================

.. image::  https://github.com/numericalalgorithmsgroup/pybobyqa/actions/workflows/python_testing.yml/badge.svg
   :target: https://github.com/numericalalgorithmsgroup/pybobyqa/actions
   :alt: Build Status

.. image::  https://img.shields.io/badge/License-GPL%20v3-blue.svg
   :target: https://www.gnu.org/licenses/gpl-3.0
   :alt: GNU GPL v3 License

.. image:: https://img.shields.io/pypi/v/Py-BOBYQA.svg
   :target: https://pypi.python.org/pypi/Py-BOBYQA
   :alt: Latest PyPI version

.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.2630437.svg
   :target: https://doi.org/10.5281/zenodo.2630437
   :alt: DOI:10.5281/zenodo.2630437

.. image:: https://static.pepy.tech/personalized-badge/py-bobyqa?period=total&units=international_system&left_color=black&right_color=green&left_text=Downloads
 :target: https://pepy.tech/project/py-bobyqa
   :alt: Total downloads

Py-BOBYQA is a flexible package for solving bound-constrained general objective minimization, without requiring derivatives of the objective. At its core, it is a Python implementation of the BOBYQA algorithm by Powell, but Py-BOBYQA has extra features improving its performance on some problems (see the papers below for details). Py-BOBYQA is particularly useful when evaluations of the objective function are expensive and/or noisy.

More details about Py-BOBYQA and its enhancements over BOBYQA can be found in our papers:

1. Coralia Cartis, Jan Fiala, Benjamin Marteau and Lindon Roberts, `Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers <https://doi.org/10.1145/3338517>`_, *ACM Transactions on Mathematical Software*, 45:3 (2019), pp. 32:1-32:41 [`arXiv preprint: 1804.00154 <https://arxiv.org/abs/1804.00154>`_] 
2. Coralia Cartis, Lindon Roberts and Oliver Sheridan-Methven, `Escaping local minima with derivative-free methods: a numerical investigation <https://doi.org/10.1080/02331934.2021.1883015>`_, *Optimization*, 71:8 (2022), pp. 2343-2373. [`arXiv preprint: 1812.11343 <https://arxiv.org/abs/1812.11343>`_] 
3. Lindon Roberts, `Model Construction for Convex-Constrained Derivative-Free Optimization <https://arxiv.org/abs/2403.14960>`_, *arXiv preprint arXiv:2403.14960* (2024).

Please cite [1] when using Py-BOBYQA for local optimization, [1,2] when using Py-BOBYQA's global optimization heuristic functionality, and [1,3] if using the general convex constraints functionality.

The original paper by Powell is: M. J. D. Powell, The BOBYQA algorithm for bound constrained optimization without derivatives, technical report DAMTP 2009/NA06, University of Cambridge (2009), and the original Fortran implementation is available `here <http://mat.uc.pt/~zhang/software.html>`_.

If you are interested in solving least-squares minimization problems, you may wish to try `DFO-LS <https://github.com/numericalalgorithmsgroup/dfols>`_, which has the same features as Py-BOBYQA (plus some more), and exploits the least-squares problem structure, so performs better on such problems.

Documentation
-------------
See manual.pdf or the `online manual <https://numericalalgorithmsgroup.github.io/pybobyqa/>`_.

Citation
--------
Full details of the Py-BOBYQA algorithm are given in our papers: 

1. Coralia Cartis, Jan Fiala, Benjamin Marteau and Lindon Roberts, `Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers <https://doi.org/10.1145/3338517>`_, *ACM Transactions on Mathematical Software*, 45:3 (2019), pp. 32:1-32:41 [`preprint <https://arxiv.org/abs/1804.00154>`_] 
2. Coralia Cartis, Lindon Roberts and Oliver Sheridan-Methven, `Escaping local minima with derivative-free methods: a numerical investigation <https://doi.org/10.1080/02331934.2021.1883015>`_, *Optimization*, 71:8 (2022), pp. 2343-2373. [`arXiv preprint: 1812.11343 <https://arxiv.org/abs/1812.11343>`_]
3. Lindon Roberts, `Model Construction for Convex-Constrained Derivative-Free Optimization <https://arxiv.org/abs/2403.14960>`_, *arXiv preprint arXiv:2403.14960* (2024).

Please cite [1] when using Py-BOBYQA for local optimization, [1,2] when using Py-BOBYQA's global optimization heuristic functionality, and [1,3] if using the general convex constraints functionality.

Requirements
------------
Py-BOBYQA requires the following software to be installed:

* Python 3.8 or higher (http://www.python.org/)

Additionally, the following python packages should be installed (these will be installed automatically if using *pip*, see `Installation using pip`_):

* NumPy (http://www.numpy.org/)
* SciPy (http://www.scipy.org/)
* Pandas (http://pandas.pydata.org/)

**Optional package:** Py-BOBYQA versions 1.2 and higher also support the `trustregion <https://github.com/lindonroberts/trust-region>`_ package for fast trust-region subproblem solutions. To install this, make sure you have a Fortran compiler (e.g. `gfortran <https://gcc.gnu.org/wiki/GFortran>`_) and NumPy installed, then run :code:`pip install trustregion`. You do not have to have trustregion installed for Py-BOBYQA to work, and it is not installed by default.

Installation using pip
----------------------
For easy installation, use `pip <http://www.pip-installer.org/>`_:

 .. code-block:: bash

    $ pip install Py-BOBYQA

Note that if an older install of Py-BOBYQA is present on your system you can use:

 .. code-block:: bash

    $ pip install --upgrade Py-BOBYQA

to upgrade Py-BOBYQA to the latest version.

Manual installation
-------------------
Alternatively, you can download the source code from `Github <https://github.com/numericalalgorithmsgroup/pybobyqa>`_ and unpack as follows:

 .. code-block:: bash

    $ git clone https://github.com/numericalalgorithmsgroup/pybobyqa
    $ cd pybobyqa

Py-BOBYQA is written in pure Python and requires no compilation. It can be installed using:

 .. code-block:: bash

    $ pip install .

instead.

To upgrade Py-BOBYQA to the latest version, navigate to the top-level directory (i.e. the one containing :code:`setup.py`) and rerun the installation using :code:`pip`, as above:

 .. code-block:: bash

    $ git pull
    $ pip install .

Testing
-------
If you installed Py-BOBYQA manually, you can test your installation using the pytest package:

 .. code-block:: bash

    $ pip install pytest
    $ python -m pytest --pyargs pybobyqa

Alternatively, the HTML documentation provides some simple examples of how to run Py-BOBYQA.

Examples
--------
Examples of how to run Py-BOBYQA are given in the `online documentation <https://numericalalgorithmsgroup.github.io/pybobyqa/>`_, and the `examples directory <https://github.com/numericalalgorithmsgroup/pybobyqa/tree/master/examples>`_ in Github.

Uninstallation
--------------
If Py-BOBYQA was installed using *pip* you can uninstall as follows:

 .. code-block:: bash

    $ pip uninstall Py-BOBYQA

If Py-BOBYQA was installed manually you have to remove the installed files by hand (located in your python site-packages directory).

Bugs
----
Please report any bugs using GitHub's issue tracker.

License
-------
This algorithm is released under the GNU GPL license. Please `contact NAG <http://www.nag.com/content/worldwide-contact-information>`_ for alternative licensing.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "Py-BOBYQA",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "Lindon Roberts <lindon.roberts@sydney.edu.au>",
    "keywords": "mathematics, optimization, derivative free optimization",
    "author": null,
    "author_email": "Lindon Roberts <lindon.roberts@sydney.edu.au>",
    "download_url": "https://files.pythonhosted.org/packages/6b/41/c4c74daf208ed27e14071e92efb7ea238ffdf77ee93a3a7777ff02d2b0e4/py_bobyqa-1.5.0.tar.gz",
    "platform": null,
    "description": "====================================================================\nPy-BOBYQA: Derivative-Free Solver for Bound-Constrained Minimization\n====================================================================\n\n.. image::  https://github.com/numericalalgorithmsgroup/pybobyqa/actions/workflows/python_testing.yml/badge.svg\n   :target: https://github.com/numericalalgorithmsgroup/pybobyqa/actions\n   :alt: Build Status\n\n.. image::  https://img.shields.io/badge/License-GPL%20v3-blue.svg\n   :target: https://www.gnu.org/licenses/gpl-3.0\n   :alt: GNU GPL v3 License\n\n.. image:: https://img.shields.io/pypi/v/Py-BOBYQA.svg\n   :target: https://pypi.python.org/pypi/Py-BOBYQA\n   :alt: Latest PyPI version\n\n.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.2630437.svg\n   :target: https://doi.org/10.5281/zenodo.2630437\n   :alt: DOI:10.5281/zenodo.2630437\n\n.. image:: https://static.pepy.tech/personalized-badge/py-bobyqa?period=total&units=international_system&left_color=black&right_color=green&left_text=Downloads\n :target: https://pepy.tech/project/py-bobyqa\n   :alt: Total downloads\n\nPy-BOBYQA is a flexible package for solving bound-constrained general objective minimization, without requiring derivatives of the objective. At its core, it is a Python implementation of the BOBYQA algorithm by Powell, but Py-BOBYQA has extra features improving its performance on some problems (see the papers below for details). Py-BOBYQA is particularly useful when evaluations of the objective function are expensive and/or noisy.\n\nMore details about Py-BOBYQA and its enhancements over BOBYQA can be found in our papers:\n\n1. Coralia Cartis, Jan Fiala, Benjamin Marteau and Lindon Roberts, `Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers <https://doi.org/10.1145/3338517>`_, *ACM Transactions on Mathematical Software*, 45:3 (2019), pp. 32:1-32:41 [`arXiv preprint: 1804.00154 <https://arxiv.org/abs/1804.00154>`_] \n2. Coralia Cartis, Lindon Roberts and Oliver Sheridan-Methven, `Escaping local minima with derivative-free methods: a numerical investigation <https://doi.org/10.1080/02331934.2021.1883015>`_, *Optimization*, 71:8 (2022), pp. 2343-2373. [`arXiv preprint: 1812.11343 <https://arxiv.org/abs/1812.11343>`_] \n3. Lindon Roberts, `Model Construction for Convex-Constrained Derivative-Free Optimization <https://arxiv.org/abs/2403.14960>`_, *arXiv preprint arXiv:2403.14960* (2024).\n\nPlease cite [1] when using Py-BOBYQA for local optimization, [1,2] when using Py-BOBYQA's global optimization heuristic functionality, and [1,3] if using the general convex constraints functionality.\n\nThe original paper by Powell is: M. J. D. Powell, The BOBYQA algorithm for bound constrained optimization without derivatives, technical report DAMTP 2009/NA06, University of Cambridge (2009), and the original Fortran implementation is available `here <http://mat.uc.pt/~zhang/software.html>`_.\n\nIf you are interested in solving least-squares minimization problems, you may wish to try `DFO-LS <https://github.com/numericalalgorithmsgroup/dfols>`_, which has the same features as Py-BOBYQA (plus some more), and exploits the least-squares problem structure, so performs better on such problems.\n\nDocumentation\n-------------\nSee manual.pdf or the `online manual <https://numericalalgorithmsgroup.github.io/pybobyqa/>`_.\n\nCitation\n--------\nFull details of the Py-BOBYQA algorithm are given in our papers: \n\n1. Coralia Cartis, Jan Fiala, Benjamin Marteau and Lindon Roberts, `Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers <https://doi.org/10.1145/3338517>`_, *ACM Transactions on Mathematical Software*, 45:3 (2019), pp. 32:1-32:41 [`preprint <https://arxiv.org/abs/1804.00154>`_] \n2. Coralia Cartis, Lindon Roberts and Oliver Sheridan-Methven, `Escaping local minima with derivative-free methods: a numerical investigation <https://doi.org/10.1080/02331934.2021.1883015>`_, *Optimization*, 71:8 (2022), pp. 2343-2373. [`arXiv preprint: 1812.11343 <https://arxiv.org/abs/1812.11343>`_]\n3. Lindon Roberts, `Model Construction for Convex-Constrained Derivative-Free Optimization <https://arxiv.org/abs/2403.14960>`_, *arXiv preprint arXiv:2403.14960* (2024).\n\nPlease cite [1] when using Py-BOBYQA for local optimization, [1,2] when using Py-BOBYQA's global optimization heuristic functionality, and [1,3] if using the general convex constraints functionality.\n\nRequirements\n------------\nPy-BOBYQA requires the following software to be installed:\n\n* Python 3.8 or higher (http://www.python.org/)\n\nAdditionally, the following python packages should be installed (these will be installed automatically if using *pip*, see `Installation using pip`_):\n\n* NumPy (http://www.numpy.org/)\n* SciPy (http://www.scipy.org/)\n* Pandas (http://pandas.pydata.org/)\n\n**Optional package:** Py-BOBYQA versions 1.2 and higher also support the `trustregion <https://github.com/lindonroberts/trust-region>`_ package for fast trust-region subproblem solutions. To install this, make sure you have a Fortran compiler (e.g. `gfortran <https://gcc.gnu.org/wiki/GFortran>`_) and NumPy installed, then run :code:`pip install trustregion`. You do not have to have trustregion installed for Py-BOBYQA to work, and it is not installed by default.\n\nInstallation using pip\n----------------------\nFor easy installation, use `pip <http://www.pip-installer.org/>`_:\n\n .. code-block:: bash\n\n    $ pip install Py-BOBYQA\n\nNote that if an older install of Py-BOBYQA is present on your system you can use:\n\n .. code-block:: bash\n\n    $ pip install --upgrade Py-BOBYQA\n\nto upgrade Py-BOBYQA to the latest version.\n\nManual installation\n-------------------\nAlternatively, you can download the source code from `Github <https://github.com/numericalalgorithmsgroup/pybobyqa>`_ and unpack as follows:\n\n .. code-block:: bash\n\n    $ git clone https://github.com/numericalalgorithmsgroup/pybobyqa\n    $ cd pybobyqa\n\nPy-BOBYQA is written in pure Python and requires no compilation. It can be installed using:\n\n .. code-block:: bash\n\n    $ pip install .\n\ninstead.\n\nTo upgrade Py-BOBYQA to the latest version, navigate to the top-level directory (i.e. the one containing :code:`setup.py`) and rerun the installation using :code:`pip`, as above:\n\n .. code-block:: bash\n\n    $ git pull\n    $ pip install .\n\nTesting\n-------\nIf you installed Py-BOBYQA manually, you can test your installation using the pytest package:\n\n .. code-block:: bash\n\n    $ pip install pytest\n    $ python -m pytest --pyargs pybobyqa\n\nAlternatively, the HTML documentation provides some simple examples of how to run Py-BOBYQA.\n\nExamples\n--------\nExamples of how to run Py-BOBYQA are given in the `online documentation <https://numericalalgorithmsgroup.github.io/pybobyqa/>`_, and the `examples directory <https://github.com/numericalalgorithmsgroup/pybobyqa/tree/master/examples>`_ in Github.\n\nUninstallation\n--------------\nIf Py-BOBYQA was installed using *pip* you can uninstall as follows:\n\n .. code-block:: bash\n\n    $ pip uninstall Py-BOBYQA\n\nIf Py-BOBYQA was installed manually you have to remove the installed files by hand (located in your python site-packages directory).\n\nBugs\n----\nPlease report any bugs using GitHub's issue tracker.\n\nLicense\n-------\nThis algorithm is released under the GNU GPL license. Please `contact NAG <http://www.nag.com/content/worldwide-contact-information>`_ for alternative licensing.\n",
    "bugtrack_url": null,
    "license": "GPL-3.0-or-later",
    "summary": "A flexible derivative-free solver for (bound constrained) general objective minimization",
    "version": "1.5.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/numericalalgorithmsgroup/pybobyqa/issues/",
        "Documentation": "https://numericalalgorithmsgroup.github.io/pybobyqa/",
        "Download": "https://github.com/numericalalgorithmsgroup/pybobyqa/releases/",
        "Homepage": "https://github.com/numericalalgorithmsgroup/pybobyqa",
        "Source Code": "https://github.com/numericalalgorithmsgroup/pybobyqa"
    },
    "split_keywords": [
        "mathematics",
        " optimization",
        " derivative free optimization"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f41e0d44a4e3a291c009a357fbd1d61511d9306c2c4db9a7ceb6e8104d8d385f",
                "md5": "6a8b642ae37eb3720a826f2a1a149d0f",
                "sha256": "457afc04d6f2c9f1814934854dc4e542c5e5982a0f80add4b211fcdb0b5811e3"
            },
            "downloads": -1,
            "filename": "Py_BOBYQA-1.5.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6a8b642ae37eb3720a826f2a1a149d0f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 57978,
            "upload_time": "2024-09-16T03:52:30",
            "upload_time_iso_8601": "2024-09-16T03:52:30.667035Z",
            "url": "https://files.pythonhosted.org/packages/f4/1e/0d44a4e3a291c009a357fbd1d61511d9306c2c4db9a7ceb6e8104d8d385f/Py_BOBYQA-1.5.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6b41c4c74daf208ed27e14071e92efb7ea238ffdf77ee93a3a7777ff02d2b0e4",
                "md5": "87b9a9195267ec68344c5f7e72998608",
                "sha256": "3c7719b68b28834ea6d538f54603f6a891263f7c21f1a673de79e3a5e0e7e413"
            },
            "downloads": -1,
            "filename": "py_bobyqa-1.5.0.tar.gz",
            "has_sig": false,
            "md5_digest": "87b9a9195267ec68344c5f7e72998608",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 51486,
            "upload_time": "2024-09-16T03:52:32",
            "upload_time_iso_8601": "2024-09-16T03:52:32.303482Z",
            "url": "https://files.pythonhosted.org/packages/6b/41/c4c74daf208ed27e14071e92efb7ea238ffdf77ee93a3a7777ff02d2b0e4/py_bobyqa-1.5.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-16 03:52:32",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "numericalalgorithmsgroup",
    "github_project": "pybobyqa",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "py-bobyqa"
}
        
Elapsed time: 1.73233s