.. image:: https://zenodo.org/badge/368267301.svg
:target: https://zenodo.org/badge/latestdoi/368267301
The Package PyAFBF is intended for the simulation of rough anisotropic image textures. Textures are sampled from a mathematical model called the anisotropic fractional Brownian field. More details can be found on the `documentation <https://fjprichard.github.io/PyAFBF/>`_.
Package features
================
- Simulation of rough anisotropic textures,
- Computation of field features (semi-variogram, regularity, anisotropy indices) that can serve as texture attributes,
- Random definition of simulated fields,
- Extensions to related fields (deformed fields, intrinsic fields, heterogeneous fields, binary patterns).
Installation from sources
=========================
The package source can be downloaded from the `repository <https://github.com/fjprichard/PyAFBF>`_.
The package can be installed through PYPI with
pip install PyAFBF
To install the package in a Google Collab environment, please type
!pip install imgaug==0.2.6
!pip install PyAFBF
Communication to the author
===========================
PyAFBF is developed and maintained by Frédéric Richard. For feed-back, contributions, bug reports, contact directly the `author <https://github.com/fjprichard>`_, or use the `discussion <https://github.com/fjprichard/PyAFBF/discussions>`_ facility.
Licence
=======
PyAFBF is under licence GNU GPL, version 3.
Citation
========
When using PyAFBF, please cite the original paper
H. Biermé, M. Moisan, and F. Richard. A turning-band method for the simulation of anisotropic fractional Brownian field. J. Comput. Graph. Statist., 24(3):885–904, 2015.
and the JOSS paper:
.. image:: https://joss.theoj.org/papers/10.21105/joss.03821/status.svg
:target: https://doi.org/10.21105/joss.03821
Contents
========
- Quick start guide
- Getting started
- Customed models
- Tuning model parameters
- Model features
- Simulating with turning-band fields
- Example gallery
- Basic examples
- Extended anisotropic fields
- Heterogeneous fields
- Related anisotropic fields
- API: main classes
- AFBF (field)
- Turning band field (tbfield)
- API: auxiliary classes
- Periodic functions (perfunction)
- Coordinates (coordinates)
- Spatial data (sdata)
- Process (process)
- Turning bands (tbparameters)
- ndarray
Credits
=======
PyAFBF is written and maintained by Frederic Richard, Professor at Aix-Marseille University, France.
Raw data
{
"_id": null,
"home_page": "https://github.com/fjprichard/PyAFBF/",
"name": "PyAFBF",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "anisotropic fractional Brownian field,image texture,simulation",
"author": "Frederic Richard",
"author_email": "frederic.richard@univ-amu.fr",
"download_url": "https://files.pythonhosted.org/packages/4b/b9/f9c58a55285bfcd959b448a5fdd290570ee65ce4e3687e5a688703fe0065/PyAFBF-0.2.0.tar.gz",
"platform": "Linux",
"description": ".. image:: https://zenodo.org/badge/368267301.svg\n :target: https://zenodo.org/badge/latestdoi/368267301\n\nThe Package PyAFBF is intended for the simulation of rough anisotropic image textures. Textures are sampled from a mathematical model called the anisotropic fractional Brownian field. More details can be found on the `documentation <https://fjprichard.github.io/PyAFBF/>`_.\n\nPackage features\n================\n\n- Simulation of rough anisotropic textures,\n\n- Computation of field features (semi-variogram, regularity, anisotropy indices) that can serve as texture attributes,\n\n- Random definition of simulated fields,\n\n- Extensions to related fields (deformed fields, intrinsic fields, heterogeneous fields, binary patterns).\n\n\nInstallation from sources\n=========================\n\nThe package source can be downloaded from the `repository <https://github.com/fjprichard/PyAFBF>`_. \n\nThe package can be installed through PYPI with\n \n pip install PyAFBF\n \nTo install the package in a Google Collab environment, please type\n\n !pip install imgaug==0.2.6\n \n !pip install PyAFBF\n\nCommunication to the author\n===========================\n\nPyAFBF is developed and maintained by Fr\u00e9d\u00e9ric Richard. For feed-back, contributions, bug reports, contact directly the `author <https://github.com/fjprichard>`_, or use the `discussion <https://github.com/fjprichard/PyAFBF/discussions>`_ facility.\n\n\nLicence\n=======\n\nPyAFBF is under licence GNU GPL, version 3.\n\n\nCitation\n========\n\nWhen using PyAFBF, please cite the original paper\n\nH. Bierm\u00e9, M. Moisan, and F. Richard. A turning-band method for the simulation of anisotropic fractional Brownian field. J. Comput. Graph. Statist., 24(3):885\u2013904, 2015.\n\nand the JOSS paper:\n\n\n.. image:: https://joss.theoj.org/papers/10.21105/joss.03821/status.svg\n :target: https://doi.org/10.21105/joss.03821\n\n\nContents\n========\n\n - Quick start guide\n - Getting started\n - Customed models\n - Tuning model parameters\n - Model features\n - Simulating with turning-band fields\n - Example gallery\n - Basic examples\n - Extended anisotropic fields\n - Heterogeneous fields\n - Related anisotropic fields\n - API: main classes\n - AFBF (field)\n - Turning band field (tbfield)\n - API: auxiliary classes\n - Periodic functions (perfunction)\n - Coordinates (coordinates)\n - Spatial data (sdata)\n - Process (process)\n - Turning bands (tbparameters)\n - ndarray\n\n\n\nCredits\n=======\n\nPyAFBF is written and maintained by Frederic Richard, Professor at Aix-Marseille University, France.\n\n\n",
"bugtrack_url": null,
"license": "GPLv3",
"summary": "Sample image textures from anisotropic fractional Brownian fields",
"version": "0.2.0",
"split_keywords": [
"anisotropic fractional brownian field",
"image texture",
"simulation"
],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "8a0140449e4daaaa721cfb3fa1707c80",
"sha256": "7b67872261b29ccb56e4b74c5ddf7bebe10de6e9a682770ce4f56fff22750290"
},
"downloads": -1,
"filename": "PyAFBF-0.2.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "8a0140449e4daaaa721cfb3fa1707c80",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 62662,
"upload_time": "2022-12-02T14:32:53",
"upload_time_iso_8601": "2022-12-02T14:32:53.572482Z",
"url": "https://files.pythonhosted.org/packages/23/79/9bc881f96208f79eb3747b69ff1a5c7bfeaba4fef14fdec664c6e41f26e5/PyAFBF-0.2.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "4132518e457e05f3198287e1716227d0",
"sha256": "f3d73ec2fb79df071bd1a5846308e0f70c4e5003388433a1d60767ddf2df5c40"
},
"downloads": -1,
"filename": "PyAFBF-0.2.0.tar.gz",
"has_sig": false,
"md5_digest": "4132518e457e05f3198287e1716227d0",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 45014,
"upload_time": "2022-12-02T14:32:55",
"upload_time_iso_8601": "2022-12-02T14:32:55.266008Z",
"url": "https://files.pythonhosted.org/packages/4b/b9/f9c58a55285bfcd959b448a5fdd290570ee65ce4e3687e5a688703fe0065/PyAFBF-0.2.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-12-02 14:32:55",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "fjprichard",
"github_project": "PyAFBF",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "pyafbf"
}