PyAFBF


NamePyAFBF JSON
Version 0.2.0 PyPI version JSON
download
home_pagehttps://github.com/fjprichard/PyAFBF/
SummarySample image textures from anisotropic fractional Brownian fields
upload_time2022-12-02 14:32:55
maintainer
docs_urlNone
authorFrederic Richard
requires_python
licenseGPLv3
keywords anisotropic fractional brownian field image texture simulation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            .. image:: https://zenodo.org/badge/368267301.svg
   :target: https://zenodo.org/badge/latestdoi/368267301

The Package PyAFBF is intended for the simulation of rough anisotropic image textures. Textures are sampled from a mathematical model called the anisotropic fractional Brownian field. More details can be found on the `documentation <https://fjprichard.github.io/PyAFBF/>`_.

Package features
================

- Simulation of rough anisotropic textures,

- Computation of field features (semi-variogram, regularity, anisotropy indices) that can serve as texture attributes,

- Random definition of simulated fields,

- Extensions to related fields (deformed fields, intrinsic fields, heterogeneous fields, binary patterns).


Installation from sources
=========================

The package source can be downloaded from the `repository <https://github.com/fjprichard/PyAFBF>`_. 

The package can be installed through PYPI with
 
 pip install PyAFBF
 
To install the package in a Google Collab environment, please type

 !pip install imgaug==0.2.6
 
 !pip install PyAFBF

Communication to the author
===========================

PyAFBF is developed and maintained by Frédéric Richard. For feed-back, contributions, bug reports, contact directly the `author <https://github.com/fjprichard>`_, or use the `discussion <https://github.com/fjprichard/PyAFBF/discussions>`_ facility.


Licence
=======

PyAFBF is under licence GNU GPL, version 3.


Citation
========

When using PyAFBF, please cite the original paper

H. Biermé, M. Moisan, and F. Richard. A turning-band method for the simulation of anisotropic fractional Brownian field. J. Comput. Graph. Statist., 24(3):885–904, 2015.

and the JOSS paper:


.. image:: https://joss.theoj.org/papers/10.21105/joss.03821/status.svg
   :target: https://doi.org/10.21105/joss.03821


Contents
========

    - Quick start guide
       - Getting started
       - Customed models
       - Tuning model parameters
       - Model features
       - Simulating with turning-band fields
    - Example gallery
       - Basic examples
       - Extended anisotropic fields
       - Heterogeneous fields
       - Related anisotropic fields
    - API: main classes
       - AFBF (field)
       - Turning band field (tbfield)
    - API: auxiliary classes
       - Periodic functions (perfunction)
       - Coordinates (coordinates)
       - Spatial data (sdata)
       - Process (process)
       - Turning bands (tbparameters)
       - ndarray



Credits
=======

PyAFBF is written and maintained by Frederic Richard, Professor at Aix-Marseille University, France.



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/fjprichard/PyAFBF/",
    "name": "PyAFBF",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "anisotropic fractional Brownian field,image texture,simulation",
    "author": "Frederic Richard",
    "author_email": "frederic.richard@univ-amu.fr",
    "download_url": "https://files.pythonhosted.org/packages/4b/b9/f9c58a55285bfcd959b448a5fdd290570ee65ce4e3687e5a688703fe0065/PyAFBF-0.2.0.tar.gz",
    "platform": "Linux",
    "description": ".. image:: https://zenodo.org/badge/368267301.svg\n   :target: https://zenodo.org/badge/latestdoi/368267301\n\nThe Package PyAFBF is intended for the simulation of rough anisotropic image textures. Textures are sampled from a mathematical model called the anisotropic fractional Brownian field. More details can be found on the `documentation <https://fjprichard.github.io/PyAFBF/>`_.\n\nPackage features\n================\n\n- Simulation of rough anisotropic textures,\n\n- Computation of field features (semi-variogram, regularity, anisotropy indices) that can serve as texture attributes,\n\n- Random definition of simulated fields,\n\n- Extensions to related fields (deformed fields, intrinsic fields, heterogeneous fields, binary patterns).\n\n\nInstallation from sources\n=========================\n\nThe package source can be downloaded from the `repository <https://github.com/fjprichard/PyAFBF>`_. \n\nThe package can be installed through PYPI with\n \n pip install PyAFBF\n \nTo install the package in a Google Collab environment, please type\n\n !pip install imgaug==0.2.6\n \n !pip install PyAFBF\n\nCommunication to the author\n===========================\n\nPyAFBF is developed and maintained by Fr\u00e9d\u00e9ric Richard. For feed-back, contributions, bug reports, contact directly the `author <https://github.com/fjprichard>`_, or use the `discussion <https://github.com/fjprichard/PyAFBF/discussions>`_ facility.\n\n\nLicence\n=======\n\nPyAFBF is under licence GNU GPL, version 3.\n\n\nCitation\n========\n\nWhen using PyAFBF, please cite the original paper\n\nH. Bierm\u00e9, M. Moisan, and F. Richard. A turning-band method for the simulation of anisotropic fractional Brownian field. J. Comput. Graph. Statist., 24(3):885\u2013904, 2015.\n\nand the JOSS paper:\n\n\n.. image:: https://joss.theoj.org/papers/10.21105/joss.03821/status.svg\n   :target: https://doi.org/10.21105/joss.03821\n\n\nContents\n========\n\n    - Quick start guide\n       - Getting started\n       - Customed models\n       - Tuning model parameters\n       - Model features\n       - Simulating with turning-band fields\n    - Example gallery\n       - Basic examples\n       - Extended anisotropic fields\n       - Heterogeneous fields\n       - Related anisotropic fields\n    - API: main classes\n       - AFBF (field)\n       - Turning band field (tbfield)\n    - API: auxiliary classes\n       - Periodic functions (perfunction)\n       - Coordinates (coordinates)\n       - Spatial data (sdata)\n       - Process (process)\n       - Turning bands (tbparameters)\n       - ndarray\n\n\n\nCredits\n=======\n\nPyAFBF is written and maintained by Frederic Richard, Professor at Aix-Marseille University, France.\n\n\n",
    "bugtrack_url": null,
    "license": "GPLv3",
    "summary": "Sample image textures from anisotropic fractional Brownian fields",
    "version": "0.2.0",
    "split_keywords": [
        "anisotropic fractional brownian field",
        "image texture",
        "simulation"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "8a0140449e4daaaa721cfb3fa1707c80",
                "sha256": "7b67872261b29ccb56e4b74c5ddf7bebe10de6e9a682770ce4f56fff22750290"
            },
            "downloads": -1,
            "filename": "PyAFBF-0.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8a0140449e4daaaa721cfb3fa1707c80",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 62662,
            "upload_time": "2022-12-02T14:32:53",
            "upload_time_iso_8601": "2022-12-02T14:32:53.572482Z",
            "url": "https://files.pythonhosted.org/packages/23/79/9bc881f96208f79eb3747b69ff1a5c7bfeaba4fef14fdec664c6e41f26e5/PyAFBF-0.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "4132518e457e05f3198287e1716227d0",
                "sha256": "f3d73ec2fb79df071bd1a5846308e0f70c4e5003388433a1d60767ddf2df5c40"
            },
            "downloads": -1,
            "filename": "PyAFBF-0.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "4132518e457e05f3198287e1716227d0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 45014,
            "upload_time": "2022-12-02T14:32:55",
            "upload_time_iso_8601": "2022-12-02T14:32:55.266008Z",
            "url": "https://files.pythonhosted.org/packages/4b/b9/f9c58a55285bfcd959b448a5fdd290570ee65ce4e3687e5a688703fe0065/PyAFBF-0.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-02 14:32:55",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "fjprichard",
    "github_project": "PyAFBF",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "pyafbf"
}
        
Elapsed time: 0.03297s