PyBingScrapper


NamePyBingScrapper JSON
Version 1.0.3 PyPI version JSON
download
home_pagehttps://github.com/Vishnunkumar/PyBingScrapper/
SummaryPython wrapper for Bing Search and RAG extraction
upload_time2023-11-06 17:30:42
maintainer
docs_urlNone
authorVishnu Nandakumar
requires_python
licenseMIT license
keywords bing search python
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # PyBingScrapper
Python wrapper for Bing Search results.

## Implementation

```
pip install PyBingScrapper
```

Below is a simple example for running the library

```python
from PyBingScrapper.search import BingSearch

bing = BingSearch("Narendra Modi")
#num - num of results to return
#max_lines - maximum number of lines/sentences to return in each result

bing_results = bing.get_results(num=4, max_lines=15)
# bing_results[i]['content'] - scrapped content
# nlines - num of iterations
# hfkey - hugging face secret key

print(bing.rag_output("Tell me about Mr. Narendra Modi?", bing_results, hfkey, n_iters=15)) #n_iters-optional

```
To only scrape results from the web use the below code snippet

```python
bing = BingSearch("Narendra Modi")
bing_results = bing.get_results(num=4, max_lines=15)

# the above code provides the top 4 results from bing search with 15 sentences from each result as content
```

To implement RAG algorithm over the query use the below. RAG - RAG is a framework/algorithm to improve LLM-generated responses by leveraging external information such as Wikipedia information etc for the queried prompt.

```python
print(bing.rag_output(bing_results, hfkey, n_iters=15))
```


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Vishnunkumar/PyBingScrapper/",
    "name": "PyBingScrapper",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "bing search python",
    "author": "Vishnu Nandakumar",
    "author_email": "nkumarvishnu25@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/b5/3c/41861b46c8bc4039d7b6e3c57cae28cb53cb84c326f0375fe205d5ef1778/PyBingScrapper-1.0.3.tar.gz",
    "platform": null,
    "description": "# PyBingScrapper\nPython wrapper for Bing Search results.\n\n## Implementation\n\n```\npip install PyBingScrapper\n```\n\nBelow is a simple example for running the library\n\n```python\nfrom PyBingScrapper.search import BingSearch\n\nbing = BingSearch(\"Narendra Modi\")\n#num - num of results to return\n#max_lines - maximum number of lines/sentences to return in each result\n\nbing_results = bing.get_results(num=4, max_lines=15)\n# bing_results[i]['content'] - scrapped content\n# nlines - num of iterations\n# hfkey - hugging face secret key\n\nprint(bing.rag_output(\"Tell me about Mr. Narendra Modi?\", bing_results, hfkey, n_iters=15)) #n_iters-optional\n\n```\nTo only scrape results from the web use the below code snippet\n\n```python\nbing = BingSearch(\"Narendra Modi\")\nbing_results = bing.get_results(num=4, max_lines=15)\n\n# the above code provides the top 4 results from bing search with 15 sentences from each result as content\n```\n\nTo implement RAG algorithm over the query use the below. RAG - RAG is a framework/algorithm to improve LLM-generated responses by leveraging external information such as Wikipedia information etc for the queried prompt.\n\n```python\nprint(bing.rag_output(bing_results, hfkey, n_iters=15))\n```\n\n",
    "bugtrack_url": null,
    "license": "MIT license",
    "summary": "Python wrapper for Bing Search and RAG extraction",
    "version": "1.0.3",
    "project_urls": {
        "Homepage": "https://github.com/Vishnunkumar/PyBingScrapper/"
    },
    "split_keywords": [
        "bing",
        "search",
        "python"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b53c41861b46c8bc4039d7b6e3c57cae28cb53cb84c326f0375fe205d5ef1778",
                "md5": "ad89d1450c6151f6346c267d94193c68",
                "sha256": "8473f064fd9679ad4833c9f8352c160811a9ed8d94f36f565002bed5d2f528b6"
            },
            "downloads": -1,
            "filename": "PyBingScrapper-1.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "ad89d1450c6151f6346c267d94193c68",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 5605,
            "upload_time": "2023-11-06T17:30:42",
            "upload_time_iso_8601": "2023-11-06T17:30:42.708652Z",
            "url": "https://files.pythonhosted.org/packages/b5/3c/41861b46c8bc4039d7b6e3c57cae28cb53cb84c326f0375fe205d5ef1778/PyBingScrapper-1.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-11-06 17:30:42",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Vishnunkumar",
    "github_project": "PyBingScrapper",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "pybingscrapper"
}
        
Elapsed time: 0.18123s