PyColorimetry


NamePyColorimetry JSON
Version 1.3.0 PyPI version JSON
download
home_pagehttps://github.com/josorio398/PyColorimetry_Library
SummaryPython library for colorimetric analysis
upload_time2023-08-16 19:08:06
maintainer
docs_urlNone
authorProf. Jhonny Osorio Gallego, M.Sc.
requires_python
licenseCC BY-NC-SA 4.0
keywords colorimetry color analysis image segmentation sam groundingdino rgb xyz cielab
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            PyColorimetry
=============

PyColorimetry is a powerful Python library designed for both educators and students in the field of colorimetry. The library processes images using semantic segmentation, leveraging the GroundingDino and SAM (Segment Anything Models) models. After segmentation, the images are normalized, and computations of RGB, tristimulus XYZ values, and conversion to the CIELAB space are performed. PyColorimetry also provides functionality for visualizing colors in the CIELAB color space. This library takes advantage of modern GPU computing power to provide efficient and accurate colorimetric computations. PyColorimetry aims to make complex colorimetric concepts more accessible, enabling deeper understanding and fostering innovation in color science.

|Python| |Pandas| |Numpy| |Matplotlib| |Scipy| |Skimage| |Sklearn| |Colab| |Torch|

.. |Python| image:: https://img.shields.io/badge/python%20-%2314354C.svg?&style=flat&logo=python&logoColor=white
  :target: https://www.python.org/
  :alt: Python

.. |Pandas| image:: https://img.shields.io/badge/Pandas%20-2C2D72?style=flat&logo=pandas&logoColor=white
  :target: https://pandas.pydata.org/
  :alt: Pandas

.. |Numpy| image:: https://img.shields.io/badge/numpy%20-%230095D5.svg?&style=flat&logo=numpy&logoColor=white
  :target: https://numpy.org/
  :alt: Numpy

.. |Matplotlib| image:: https://img.shields.io/badge/Matplotlib%20-008080?style=flat&logo=matplotlib&logoColor=white
  :target: https://matplotlib.org/
  :alt: Matplotlib

.. |Scipy| image:: https://img.shields.io/badge/scipy%20-00599C?style=flat&logo=scipy&logoColor=white
  :target: https://scipy.org/
  :alt: Scipy

.. |Skimage| image:: https://img.shields.io/badge/skimage%20--FFAD00?style=flat&logo=scikit-image&logoColor=white
  :target: https://scikit-image.org/
  :alt: Skimage

.. |Sklearn| image:: https://img.shields.io/badge/Sklearn%20-F7931E?style=flat&logo=scikit-learn&logoColor=white
  :target: https://scikit-learn.org/
  :alt: Sklearn

.. |Colab| image:: https://img.shields.io/badge/Colab%20--FFAD00?style=flat&logo=googlecolab&logoColor=white
  :target: https://colab.research.google.com/
  :alt: Colab

.. |Torch| image:: https://img.shields.io/badge/Torch%20-EE4C2C?style=flat&logo=pytorch&logoColor=white
  :target: https://pytorch.org/
  :alt: Torch

Installation 
============

The PyColorimetry library may be installed using pip:
  
.. code:: python

    !pip install PyColorimetry

You also need to download the weights for the SAM model:

.. code:: python

    !wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth

To import the library, you can use:

.. code:: python

    from PyColorimetry.ColorimetricAnalysis import *

Requirements
============

- Python 3.6 or later
- GPU support
- Libraries: Pandas, Numpy, Matplotlib, Scipy, Skimage, Sklearn, Torch
- Models: SAM (Segment Anything Models), GroundingDino
- Installation support is currently provided for Google Colab

Maintainer
==========

- **Prof. Jhonny Osorio Gallego, M.Sc.**

https://github.com/josorio398

Universidad de América

jhonny.osorio@profesores.uamerica.edu.co

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/josorio398/PyColorimetry_Library",
    "name": "PyColorimetry",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "colorimetry,color analysis,image segmentation,SAM,GroundingDino,RGB,XYZ,CIELAB",
    "author": "Prof. Jhonny Osorio Gallego, M.Sc.",
    "author_email": "osoriojohnny1986@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/29/21/6594f9ef15bfba85d48ba51c0bfc69bbb801b75626e5882b11d9594e37f4/PyColorimetry-1.3.0.tar.gz",
    "platform": null,
    "description": "PyColorimetry\r\n=============\r\n\r\nPyColorimetry is a powerful Python library designed for both educators and students in the field of colorimetry. The library processes images using semantic segmentation, leveraging the GroundingDino and SAM (Segment Anything Models) models. After segmentation, the images are normalized, and computations of RGB, tristimulus XYZ values, and conversion to the CIELAB space are performed. PyColorimetry also provides functionality for visualizing colors in the CIELAB color space. This library takes advantage of modern GPU computing power to provide efficient and accurate colorimetric computations. PyColorimetry aims to make complex colorimetric concepts more accessible, enabling deeper understanding and fostering innovation in color science.\r\n\r\n|Python| |Pandas| |Numpy| |Matplotlib| |Scipy| |Skimage| |Sklearn| |Colab| |Torch|\r\n\r\n.. |Python| image:: https://img.shields.io/badge/python%20-%2314354C.svg?&style=flat&logo=python&logoColor=white\r\n  :target: https://www.python.org/\r\n  :alt: Python\r\n\r\n.. |Pandas| image:: https://img.shields.io/badge/Pandas%20-2C2D72?style=flat&logo=pandas&logoColor=white\r\n  :target: https://pandas.pydata.org/\r\n  :alt: Pandas\r\n\r\n.. |Numpy| image:: https://img.shields.io/badge/numpy%20-%230095D5.svg?&style=flat&logo=numpy&logoColor=white\r\n  :target: https://numpy.org/\r\n  :alt: Numpy\r\n\r\n.. |Matplotlib| image:: https://img.shields.io/badge/Matplotlib%20-008080?style=flat&logo=matplotlib&logoColor=white\r\n  :target: https://matplotlib.org/\r\n  :alt: Matplotlib\r\n\r\n.. |Scipy| image:: https://img.shields.io/badge/scipy%20-00599C?style=flat&logo=scipy&logoColor=white\r\n  :target: https://scipy.org/\r\n  :alt: Scipy\r\n\r\n.. |Skimage| image:: https://img.shields.io/badge/skimage%20--FFAD00?style=flat&logo=scikit-image&logoColor=white\r\n  :target: https://scikit-image.org/\r\n  :alt: Skimage\r\n\r\n.. |Sklearn| image:: https://img.shields.io/badge/Sklearn%20-F7931E?style=flat&logo=scikit-learn&logoColor=white\r\n  :target: https://scikit-learn.org/\r\n  :alt: Sklearn\r\n\r\n.. |Colab| image:: https://img.shields.io/badge/Colab%20--FFAD00?style=flat&logo=googlecolab&logoColor=white\r\n  :target: https://colab.research.google.com/\r\n  :alt: Colab\r\n\r\n.. |Torch| image:: https://img.shields.io/badge/Torch%20-EE4C2C?style=flat&logo=pytorch&logoColor=white\r\n  :target: https://pytorch.org/\r\n  :alt: Torch\r\n\r\nInstallation \r\n============\r\n\r\nThe PyColorimetry library may be installed using pip:\r\n  \r\n.. code:: python\r\n\r\n    !pip install PyColorimetry\r\n\r\nYou also need to download the weights for the SAM model:\r\n\r\n.. code:: python\r\n\r\n    !wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth\r\n\r\nTo import the library, you can use:\r\n\r\n.. code:: python\r\n\r\n    from PyColorimetry.ColorimetricAnalysis import *\r\n\r\nRequirements\r\n============\r\n\r\n- Python 3.6 or later\r\n- GPU support\r\n- Libraries: Pandas, Numpy, Matplotlib, Scipy, Skimage, Sklearn, Torch\r\n- Models: SAM (Segment Anything Models), GroundingDino\r\n- Installation support is currently provided for Google Colab\r\n\r\nMaintainer\r\n==========\r\n\r\n- **Prof. Jhonny Osorio Gallego, M.Sc.**\r\n\r\nhttps://github.com/josorio398\r\n\r\nUniversidad de Am\u00e9rica\r\n\r\njhonny.osorio@profesores.uamerica.edu.co\r\n",
    "bugtrack_url": null,
    "license": "CC BY-NC-SA 4.0",
    "summary": "Python library for colorimetric analysis",
    "version": "1.3.0",
    "project_urls": {
        "Download": "https://github.com/josorio398/PyColorimetry_Library/blob/main/PyColorimetry/ColorimetricAnalysis.py",
        "Homepage": "https://github.com/josorio398/PyColorimetry_Library"
    },
    "split_keywords": [
        "colorimetry",
        "color analysis",
        "image segmentation",
        "sam",
        "groundingdino",
        "rgb",
        "xyz",
        "cielab"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "29216594f9ef15bfba85d48ba51c0bfc69bbb801b75626e5882b11d9594e37f4",
                "md5": "2625a4a6d76ced4e88a7b4dca644d294",
                "sha256": "cda7823b76b86dbeaf007c705c8e5d540d9e18f151cff3c57240a5b5b7deb523"
            },
            "downloads": -1,
            "filename": "PyColorimetry-1.3.0.tar.gz",
            "has_sig": false,
            "md5_digest": "2625a4a6d76ced4e88a7b4dca644d294",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 20735,
            "upload_time": "2023-08-16T19:08:06",
            "upload_time_iso_8601": "2023-08-16T19:08:06.038186Z",
            "url": "https://files.pythonhosted.org/packages/29/21/6594f9ef15bfba85d48ba51c0bfc69bbb801b75626e5882b11d9594e37f4/PyColorimetry-1.3.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-16 19:08:06",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "josorio398",
    "github_project": "PyColorimetry_Library",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "pycolorimetry"
}
        
Elapsed time: 1.95674s