PyDTMC


NamePyDTMC JSON
Version 8.6.0 PyPI version JSON
download
home_pagehttps://github.com/TommasoBelluzzo/PyDTMC
SummaryA full-featured and lightweight library for discrete-time Markov chains analysis.
upload_time2024-03-18 01:28:31
maintainerTommaso Belluzzo
docs_urlNone
authorTommaso Belluzzo
requires_python>=3.8
licenseMIT
keywords markov-chain markov-chains markov-model markov-models markov-state-model markov-state-models hidden-markov-model hidden-markov-models mathematics statistics probability stochastic-process stochastic-processes analysis fitting simulation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            PyDTMC is a full-featured and lightweight library for discrete-time Markov chains analysis. It provides classes and functions for creating, manipulating, simulating and visualizing Markov processes.

<table>
  <tr>
    <td align="right">Status:</td>
    <td align="left">
      <a href="https://github.com/TommasoBelluzzo/PyDTMC/actions/workflows/continuous_integration.yml"><img alt="Build" src="https://img.shields.io/github/workflow/status/TommasoBelluzzo/PyDTMC/Continuous%20Integration?style=flat&label=Build&color=1081C2"/></a>
      <a href="https://pydtmc.readthedocs.io/"><img alt="Docs" src="https://img.shields.io/readthedocs/pydtmc?style=flat&label=Docs&color=1081C2"/></a>
      <a href="https://coveralls.io/github/TommasoBelluzzo/PyDTMC?branch=master"><img alt="Coverage" src="https://img.shields.io/coveralls/github/TommasoBelluzzo/PyDTMC?style=flat&label=Coverage&color=1081C2"/></a>
    </td>
  </tr>
  <tr>
    <td align="right">Info:</td>
    <td align="left">
      <a href="#"><img alt="License" src="https://img.shields.io/github/license/TommasoBelluzzo/PyDTMC?style=flat&label=License&color=1081C2"/></a>
      <a href="#"><img alt="Lines" src="https://img.shields.io/tokei/lines/github/TommasoBelluzzo/PyDTMC?style=flat&label=Lines&color=1081C2"/></a>
      <a href="#"><img alt="Size" src="https://img.shields.io/github/repo-size/TommasoBelluzzo/PyDTMC?style=flat&label=Size&color=1081C2"/></a>
    </td>
  </tr>
  <tr>
    <td align="right">PyPI:</td>
    <td align="left">
      <a href="https://pypi.org/project/PyDTMC/"><img alt="Version" src="https://img.shields.io/pypi/v/PyDTMC?style=flat&label=Version&color=1081C2"/></a>
      <a href="https://pypi.org/project/PyDTMC/"><img alt="Python" src="https://img.shields.io/pypi/pyversions/PyDTMC?style=flat&label=Python&color=1081C2"/></a>
      <a href="https://pypi.org/project/PyDTMC/"><img alt="Wheel" src="https://img.shields.io/pypi/wheel/PyDTMC?style=flat&label=Wheel&color=1081C2"/></a>
      <a href="https://pypi.org/project/PyDTMC/"><img alt="Downloads" src="https://img.shields.io/pypi/dm/PyDTMC?style=flat&label=Downloads&color=1081C2"/></a>
    </td>
  </tr>
  <tr>
    <td align="right">Conda:</td>
    <td align="left">
      <a href="https://anaconda.org/conda-forge/pydtmc/"><img alt="Version" src="https://img.shields.io/conda/vn/conda-forge/pydtmc?style=flat&label=Version"/></a>
      <a href="https://anaconda.org/conda-forge/pydtmc/"><img alt="Python" src="https://img.shields.io/pypi/pyversions/PyDTMC?style=flat&label=Python&color=1081C2"/></a>
      <a href="https://anaconda.org/conda-forge/pydtmc/"><img alt="Platforms" src="https://img.shields.io/conda/pn/conda-forge/pydtmc?style=flat&label=Platforms&color=1081C2"/></a>
      <a href="https://anaconda.org/conda-forge/pydtmc/"><img alt="Downloads" src="https://img.shields.io/conda/dn/conda-forge/pydtmc?style=flat&label=Downloads&color=1081C2"/></a>
    </td>
  </tr>
  <tr>
    <td align="right">Donation:</td>
    <td align="left">
      <a href="https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=D8LH6DNYN7EN8"><img alt="PayPal" src="https://www.paypalobjects.com/en_US/i/btn/btn_donate_LG.gif"/></a>
    </td>
  </tr>
</table>

## Requirements

The `Python` environment must include the following packages:

* [Matplotlib](https://matplotlib.org/)
* [NetworkX](https://networkx.github.io/)
* [NumPy](https://www.numpy.org/)
* [SciPy](https://www.scipy.org/)

*Notes:*

* It's recommended to install [Graphviz](https://www.graphviz.org/) and [pydot](https://pypi.org/project/pydot/) before using the `plot_graph` function.
* The packages [pytest](https://pytest.org/) and [pytest-benchmark](https://pypi.org/project/pytest-benchmark/) are required for performing unit tests.
* The package [Sphinx](https://www.sphinx-doc.org/) is required for building the package documentation.

## Installation & Upgrade

[PyPI](https://pypi.org/):

```sh
$ pip install PyDTMC
$ pip install --upgrade PyDTMC
```

[Git](https://git-scm.com/):

```sh
$ pip install https://github.com/TommasoBelluzzo/PyDTMC/tarball/master
$ pip install --upgrade https://github.com/TommasoBelluzzo/PyDTMC/tarball/master

$ pip install git+https://github.com/TommasoBelluzzo/PyDTMC.git#egg=PyDTMC
$ pip install --upgrade git+https://github.com/TommasoBelluzzo/PyDTMC.git#egg=PyDTMC
```

[Conda](https://docs.conda.io/):

```sh
$ conda install -c conda-forge pydtmc
$ conda update -c conda-forge pydtmc

$ conda install -c tommasobelluzzo pydtmc
$ conda update -c tommasobelluzzo pydtmc
```

## Usage: MarkovChain Class

The `MarkovChain` class can be instantiated as follows:

```console
>>> p = [[0.2, 0.7, 0.0, 0.1], [0.0, 0.6, 0.3, 0.1], [0.0, 0.0, 1.0, 0.0], [0.5, 0.0, 0.5, 0.0]]
>>> mc = MarkovChain(p, ['A', 'B', 'C', 'D'])
>>> print(mc)

DISCRETE-TIME MARKOV CHAIN
 SIZE:           4
 RANK:           4
 CLASSES:        2
  > RECURRENT:   1
  > TRANSIENT:   1
 ERGODIC:        NO
  > APERIODIC:   YES
  > IRREDUCIBLE: NO
 ABSORBING:      YES
 MONOTONE:       NO
 REGULAR:        NO
 REVERSIBLE:     YES
 SYMMETRIC:      NO
```

Below a few examples of `MarkovChain` properties:

```console
>>> print(mc.is_ergodic)
False

>>> print(mc.recurrent_states)
['C']

>>> print(mc.transient_states)
['A', 'B', 'D']

>>> print(mc.steady_states)
[array([0.0, 0.0, 1.0, 0.0])]

>>> print(mc.is_absorbing)
True

>>> print(mc.fundamental_matrix)
[[1.50943396, 2.64150943, 0.41509434]
 [0.18867925, 2.83018868, 0.30188679]
 [0.75471698, 1.32075472, 1.20754717]]
 
>>> print(mc.kemeny_constant)
5.547169811320755

>>> print(mc.entropy_rate)
0.0
```

Below a few examples of `MarkovChain` methods:

```console
>>> print(mc.absorption_probabilities())
[1.0 1.0 1.0]

>>> print(mc.expected_rewards(10, [2, -3, 8, -7]))
[44.96611926, 52.03057032, 88.00000000, 51.74779651]

>>> print(mc.expected_transitions(2))
[[0.0850, 0.2975, 0.0000, 0.0425]
 [0.0000, 0.3450, 0.1725, 0.0575]
 [0.0000, 0.0000, 0.7000, 0.0000]
 [0.1500, 0.0000, 0.1500, 0.0000]]

>>> print(mc.first_passage_probabilities(5, 3))
[[0.5000, 0.0000, 0.5000, 0.0000]
 [0.0000, 0.3500, 0.0000, 0.0500]
 [0.0000, 0.0700, 0.1300, 0.0450]
 [0.0000, 0.0315, 0.1065, 0.0300]
 [0.0000, 0.0098, 0.0761, 0.0186]]
 
>>> print(mc.hitting_probabilities([0, 1]))
[1.0, 1.0, 0.0, 0.5]
 
>>> print(mc.mean_absorption_times())
[4.56603774, 3.32075472, 3.28301887]

>>> print(mc.mean_number_visits())
[[0.50943396, 2.64150943, INF, 0.41509434]
 [0.18867925, 1.83018868, INF, 0.30188679]
 [0.00000000, 0.00000000, INF, 0.00000000]
 [0.75471698, 1.32075472, INF, 0.20754717]]
 
>>> print(mc.simulate(10, seed=32))
['D', 'A', 'B', 'B', 'C', 'C', 'C', 'C', 'C', 'C', 'C']
```

```console
>>> sequence = ["A"]
>>> for i in range(1, 11):
...     current_state = sequence[-1]
...     next_state = mc.next(current_state, seed=32)
...     print((' ' if i < 10 else '') + f'{i}) {current_state} -> {next_state}')
...     sequence.append(next_state)
 1) A -> B
 2) B -> C
 3) C -> C
 4) C -> C
 5) C -> C
 6) C -> C
 7) C -> C
 8) C -> C
 9) C -> C
10) C -> C
```

Below a few examples of `MarkovChain` plotting functions; in order to display the output of plots immediately, the [interactive mode](https://matplotlib.org/stable/users/interactive.html#interactive-mode) of [Matplotlib](https://matplotlib.org/) must be turned on:

```console
>>> plot_eigenvalues(mc, dpi=300)
>>> plot_graph(mc, dpi=300)
>>> plot_sequence(mc, 10, plot_type='histogram', dpi=300)
>>> plot_sequence(mc, 10, plot_type='heatmap', dpi=300)
>>> plot_sequence(mc, 10, plot_type='matrix', dpi=300)
>>> plot_redistributions(mc, 10, plot_type='heatmap', dpi=300)
>>> plot_redistributions(mc, 10, plot_type='projection', dpi=300)
```

![Screenshots](https://i.imgur.com/bltMSi5.gif)

## Usage: HiddenMarkovModel Class

The `HiddenMarkovModel` class can be instantiated as follows:

```console
>>> p = [[0.4, 0.6], [0.8, 0.2]]
>>> states = ['A', 'B']
>>> e = [[0.5, 0.0, 0.0, 0.5], [0.2, 0.2, 0.2, 0.4]]
>>> symbols = ['H1', 'H2', 'H3', 'H4']
>>> hmm = HiddenMarkovModel(p, e, states, symbols)
>>> print(hmm)
    
HIDDEN MARKOV MODEL
 STATES:  2
 SYMBOLS: 4
 ERGODIC: NO
 REGULAR: NO
```

Below a few examples of `HiddenMarkovModel` methods:

```console
>>> sim_states, sim_symbols = hmm.simulate(12, seed=1488)
>>> print(sim_states)
['B', 'A', 'A', 'A', 'B', 'A', 'A']
>>> print(sim_symbols)
['H2', 'H4', 'H4', 'H4', 'H3', 'H4', 'H4']

>>> est_hmm = hmm.estimate(states, symbols, sim_states, sim_symbols)
>>> print(est_hmm.p)
[[0.75, 0.25]
 [1.00, 0.00]]
>>> print(est_hmm.e)
[[0.0, 0.0, 0.0, 1.0]
 [0.0, 0.5, 0.5, 0.0]]

>>> dec_lp, dec_posterior, dec_backward, dec_forward, _ = hmm.decode(sim_symbols)
>>> print(dec_lp)
-8.77549587
>>> print(dec_posterior)
[[0.00000000, 0.84422968, 0.41785105, 0.84422968, 0.00000000, 0.82089552, 0.52238806]
 [1.00000000, 0.15577032, 0.58214895, 0.15577032, 1.00000000, 0.17910448, 0.47761194]]
>>> print(dec_backward)
[[1.50000000, 0.88942581, 1.01307561, 0.79988630, 1.31154065, 0.94776119, 0.98507463, 1.00000000]
 [0.50000000, 1.00000000, 0.93462194, 1.21887436, 0.43718022, 1.00000000, 1.07462687, 1.00000000]]
>>> print(dec_forward)
[[0.50000000, 0.00000000, 0.83333333, 0.52238806, 0.64369311, 0.00000000, 0.83333333 0.52238806]
 [0.50000000, 1.00000000, 0.16666667, 0.47761194, 0.35630689, 1.00000000, 0.16666667 0.47761194]]

>>> pre_lp, pre_states = hmm.predict('viterbi', sim_symbols)
>>> print(pre_lp)
-13.24482936
>>> print(pre_states)
['B', 'A', 'B', 'A', 'B', 'A', 'B']
```

Below a few examples of `HiddenMarkovModel` plotting functions; in order to display the output of plots immediately, the [interactive mode](https://matplotlib.org/stable/users/interactive.html#interactive-mode) of [Matplotlib](https://matplotlib.org/) must be turned on:

```console
>>> plot_graph(hmm, dpi=300)
>>> plot_sequence(hmm, 10, plot_type='histogram', dpi=300)
>>> plot_sequence(hmm, 10, plot_type='heatmap', dpi=300)
>>> plot_sequence(hmm, 10, plot_type='matrix', dpi=300)
>>> plot_trellis(hmm, 10, dpi=300)
```

![Screenshots](https://i.imgur.com/rSNUbdX.gif)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/TommasoBelluzzo/PyDTMC",
    "name": "PyDTMC",
    "maintainer": "Tommaso Belluzzo",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "tommaso.belluzzo@gmail.com",
    "keywords": "markov-chain,markov-chains,markov-model,markov-models,markov-state-model,markov-state-models,hidden-markov-model,hidden-markov-models,mathematics,statistics,probability,stochastic-process,stochastic-processes,analysis,fitting,simulation",
    "author": "Tommaso Belluzzo",
    "author_email": "tommaso.belluzzo@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/aa/67/c8fab1ae44b40714ac2daf695622d69173b59568a39fb07c9afc8a6ac9f0/PyDTMC-8.6.0.tar.gz",
    "platform": "any",
    "description": "PyDTMC is a full-featured and lightweight library for discrete-time Markov chains analysis. It provides classes and functions for creating, manipulating, simulating and visualizing Markov processes.\n\n<table>\n  <tr>\n    <td align=\"right\">Status:</td>\n    <td align=\"left\">\n      <a href=\"https://github.com/TommasoBelluzzo/PyDTMC/actions/workflows/continuous_integration.yml\"><img alt=\"Build\" src=\"https://img.shields.io/github/workflow/status/TommasoBelluzzo/PyDTMC/Continuous%20Integration?style=flat&label=Build&color=1081C2\"/></a>\n      <a href=\"https://pydtmc.readthedocs.io/\"><img alt=\"Docs\" src=\"https://img.shields.io/readthedocs/pydtmc?style=flat&label=Docs&color=1081C2\"/></a>\n      <a href=\"https://coveralls.io/github/TommasoBelluzzo/PyDTMC?branch=master\"><img alt=\"Coverage\" src=\"https://img.shields.io/coveralls/github/TommasoBelluzzo/PyDTMC?style=flat&label=Coverage&color=1081C2\"/></a>\n    </td>\n  </tr>\n  <tr>\n    <td align=\"right\">Info:</td>\n    <td align=\"left\">\n      <a href=\"#\"><img alt=\"License\" src=\"https://img.shields.io/github/license/TommasoBelluzzo/PyDTMC?style=flat&label=License&color=1081C2\"/></a>\n      <a href=\"#\"><img alt=\"Lines\" src=\"https://img.shields.io/tokei/lines/github/TommasoBelluzzo/PyDTMC?style=flat&label=Lines&color=1081C2\"/></a>\n      <a href=\"#\"><img alt=\"Size\" src=\"https://img.shields.io/github/repo-size/TommasoBelluzzo/PyDTMC?style=flat&label=Size&color=1081C2\"/></a>\n    </td>\n  </tr>\n  <tr>\n    <td align=\"right\">PyPI:</td>\n    <td align=\"left\">\n      <a href=\"https://pypi.org/project/PyDTMC/\"><img alt=\"Version\" src=\"https://img.shields.io/pypi/v/PyDTMC?style=flat&label=Version&color=1081C2\"/></a>\n      <a href=\"https://pypi.org/project/PyDTMC/\"><img alt=\"Python\" src=\"https://img.shields.io/pypi/pyversions/PyDTMC?style=flat&label=Python&color=1081C2\"/></a>\n      <a href=\"https://pypi.org/project/PyDTMC/\"><img alt=\"Wheel\" src=\"https://img.shields.io/pypi/wheel/PyDTMC?style=flat&label=Wheel&color=1081C2\"/></a>\n      <a href=\"https://pypi.org/project/PyDTMC/\"><img alt=\"Downloads\" src=\"https://img.shields.io/pypi/dm/PyDTMC?style=flat&label=Downloads&color=1081C2\"/></a>\n    </td>\n  </tr>\n  <tr>\n    <td align=\"right\">Conda:</td>\n    <td align=\"left\">\n      <a href=\"https://anaconda.org/conda-forge/pydtmc/\"><img alt=\"Version\" src=\"https://img.shields.io/conda/vn/conda-forge/pydtmc?style=flat&label=Version\"/></a>\n      <a href=\"https://anaconda.org/conda-forge/pydtmc/\"><img alt=\"Python\" src=\"https://img.shields.io/pypi/pyversions/PyDTMC?style=flat&label=Python&color=1081C2\"/></a>\n      <a href=\"https://anaconda.org/conda-forge/pydtmc/\"><img alt=\"Platforms\" src=\"https://img.shields.io/conda/pn/conda-forge/pydtmc?style=flat&label=Platforms&color=1081C2\"/></a>\n      <a href=\"https://anaconda.org/conda-forge/pydtmc/\"><img alt=\"Downloads\" src=\"https://img.shields.io/conda/dn/conda-forge/pydtmc?style=flat&label=Downloads&color=1081C2\"/></a>\n    </td>\n  </tr>\n  <tr>\n    <td align=\"right\">Donation:</td>\n    <td align=\"left\">\n      <a href=\"https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=D8LH6DNYN7EN8\"><img alt=\"PayPal\" src=\"https://www.paypalobjects.com/en_US/i/btn/btn_donate_LG.gif\"/></a>\n    </td>\n  </tr>\n</table>\n\n## Requirements\n\nThe `Python` environment must include the following packages:\n\n* [Matplotlib](https://matplotlib.org/)\n* [NetworkX](https://networkx.github.io/)\n* [NumPy](https://www.numpy.org/)\n* [SciPy](https://www.scipy.org/)\n\n*Notes:*\n\n* It's recommended to install [Graphviz](https://www.graphviz.org/) and [pydot](https://pypi.org/project/pydot/) before using the `plot_graph` function.\n* The packages [pytest](https://pytest.org/) and [pytest-benchmark](https://pypi.org/project/pytest-benchmark/) are required for performing unit tests.\n* The package [Sphinx](https://www.sphinx-doc.org/) is required for building the package documentation.\n\n## Installation & Upgrade\n\n[PyPI](https://pypi.org/):\n\n```sh\n$ pip install PyDTMC\n$ pip install --upgrade PyDTMC\n```\n\n[Git](https://git-scm.com/):\n\n```sh\n$ pip install https://github.com/TommasoBelluzzo/PyDTMC/tarball/master\n$ pip install --upgrade https://github.com/TommasoBelluzzo/PyDTMC/tarball/master\n\n$ pip install git+https://github.com/TommasoBelluzzo/PyDTMC.git#egg=PyDTMC\n$ pip install --upgrade git+https://github.com/TommasoBelluzzo/PyDTMC.git#egg=PyDTMC\n```\n\n[Conda](https://docs.conda.io/):\n\n```sh\n$ conda install -c conda-forge pydtmc\n$ conda update -c conda-forge pydtmc\n\n$ conda install -c tommasobelluzzo pydtmc\n$ conda update -c tommasobelluzzo pydtmc\n```\n\n## Usage: MarkovChain Class\n\nThe `MarkovChain` class can be instantiated as follows:\n\n```console\n>>> p = [[0.2, 0.7, 0.0, 0.1], [0.0, 0.6, 0.3, 0.1], [0.0, 0.0, 1.0, 0.0], [0.5, 0.0, 0.5, 0.0]]\n>>> mc = MarkovChain(p, ['A', 'B', 'C', 'D'])\n>>> print(mc)\n\nDISCRETE-TIME MARKOV CHAIN\n SIZE:           4\n RANK:           4\n CLASSES:        2\n  > RECURRENT:   1\n  > TRANSIENT:   1\n ERGODIC:        NO\n  > APERIODIC:   YES\n  > IRREDUCIBLE: NO\n ABSORBING:      YES\n MONOTONE:       NO\n REGULAR:        NO\n REVERSIBLE:     YES\n SYMMETRIC:      NO\n```\n\nBelow a few examples of `MarkovChain` properties:\n\n```console\n>>> print(mc.is_ergodic)\nFalse\n\n>>> print(mc.recurrent_states)\n['C']\n\n>>> print(mc.transient_states)\n['A', 'B', 'D']\n\n>>> print(mc.steady_states)\n[array([0.0, 0.0, 1.0, 0.0])]\n\n>>> print(mc.is_absorbing)\nTrue\n\n>>> print(mc.fundamental_matrix)\n[[1.50943396, 2.64150943, 0.41509434]\n [0.18867925, 2.83018868, 0.30188679]\n [0.75471698, 1.32075472, 1.20754717]]\n \n>>> print(mc.kemeny_constant)\n5.547169811320755\n\n>>> print(mc.entropy_rate)\n0.0\n```\n\nBelow a few examples of `MarkovChain` methods:\n\n```console\n>>> print(mc.absorption_probabilities())\n[1.0 1.0 1.0]\n\n>>> print(mc.expected_rewards(10, [2, -3, 8, -7]))\n[44.96611926, 52.03057032, 88.00000000, 51.74779651]\n\n>>> print(mc.expected_transitions(2))\n[[0.0850, 0.2975, 0.0000, 0.0425]\n [0.0000, 0.3450, 0.1725, 0.0575]\n [0.0000, 0.0000, 0.7000, 0.0000]\n [0.1500, 0.0000, 0.1500, 0.0000]]\n\n>>> print(mc.first_passage_probabilities(5, 3))\n[[0.5000, 0.0000, 0.5000, 0.0000]\n [0.0000, 0.3500, 0.0000, 0.0500]\n [0.0000, 0.0700, 0.1300, 0.0450]\n [0.0000, 0.0315, 0.1065, 0.0300]\n [0.0000, 0.0098, 0.0761, 0.0186]]\n \n>>> print(mc.hitting_probabilities([0, 1]))\n[1.0, 1.0, 0.0, 0.5]\n \n>>> print(mc.mean_absorption_times())\n[4.56603774, 3.32075472, 3.28301887]\n\n>>> print(mc.mean_number_visits())\n[[0.50943396, 2.64150943, INF, 0.41509434]\n [0.18867925, 1.83018868, INF, 0.30188679]\n [0.00000000, 0.00000000, INF, 0.00000000]\n [0.75471698, 1.32075472, INF, 0.20754717]]\n \n>>> print(mc.simulate(10, seed=32))\n['D', 'A', 'B', 'B', 'C', 'C', 'C', 'C', 'C', 'C', 'C']\n```\n\n```console\n>>> sequence = [\"A\"]\n>>> for i in range(1, 11):\n...     current_state = sequence[-1]\n...     next_state = mc.next(current_state, seed=32)\n...     print((' ' if i < 10 else '') + f'{i}) {current_state} -> {next_state}')\n...     sequence.append(next_state)\n 1) A -> B\n 2) B -> C\n 3) C -> C\n 4) C -> C\n 5) C -> C\n 6) C -> C\n 7) C -> C\n 8) C -> C\n 9) C -> C\n10) C -> C\n```\n\nBelow a few examples of `MarkovChain` plotting functions; in order to display the output of plots immediately, the [interactive mode](https://matplotlib.org/stable/users/interactive.html#interactive-mode) of [Matplotlib](https://matplotlib.org/) must be turned on:\n\n```console\n>>> plot_eigenvalues(mc, dpi=300)\n>>> plot_graph(mc, dpi=300)\n>>> plot_sequence(mc, 10, plot_type='histogram', dpi=300)\n>>> plot_sequence(mc, 10, plot_type='heatmap', dpi=300)\n>>> plot_sequence(mc, 10, plot_type='matrix', dpi=300)\n>>> plot_redistributions(mc, 10, plot_type='heatmap', dpi=300)\n>>> plot_redistributions(mc, 10, plot_type='projection', dpi=300)\n```\n\n![Screenshots](https://i.imgur.com/bltMSi5.gif)\n\n## Usage: HiddenMarkovModel Class\n\nThe `HiddenMarkovModel` class can be instantiated as follows:\n\n```console\n>>> p = [[0.4, 0.6], [0.8, 0.2]]\n>>> states = ['A', 'B']\n>>> e = [[0.5, 0.0, 0.0, 0.5], [0.2, 0.2, 0.2, 0.4]]\n>>> symbols = ['H1', 'H2', 'H3', 'H4']\n>>> hmm = HiddenMarkovModel(p, e, states, symbols)\n>>> print(hmm)\n    \nHIDDEN MARKOV MODEL\n STATES:  2\n SYMBOLS: 4\n ERGODIC: NO\n REGULAR: NO\n```\n\nBelow a few examples of `HiddenMarkovModel` methods:\n\n```console\n>>> sim_states, sim_symbols = hmm.simulate(12, seed=1488)\n>>> print(sim_states)\n['B', 'A', 'A', 'A', 'B', 'A', 'A']\n>>> print(sim_symbols)\n['H2', 'H4', 'H4', 'H4', 'H3', 'H4', 'H4']\n\n>>> est_hmm = hmm.estimate(states, symbols, sim_states, sim_symbols)\n>>> print(est_hmm.p)\n[[0.75, 0.25]\n [1.00, 0.00]]\n>>> print(est_hmm.e)\n[[0.0, 0.0, 0.0, 1.0]\n [0.0, 0.5, 0.5, 0.0]]\n\n>>> dec_lp, dec_posterior, dec_backward, dec_forward, _ = hmm.decode(sim_symbols)\n>>> print(dec_lp)\n-8.77549587\n>>> print(dec_posterior)\n[[0.00000000, 0.84422968, 0.41785105, 0.84422968, 0.00000000, 0.82089552, 0.52238806]\n [1.00000000, 0.15577032, 0.58214895, 0.15577032, 1.00000000, 0.17910448, 0.47761194]]\n>>> print(dec_backward)\n[[1.50000000, 0.88942581, 1.01307561, 0.79988630, 1.31154065, 0.94776119, 0.98507463, 1.00000000]\n [0.50000000, 1.00000000, 0.93462194, 1.21887436, 0.43718022, 1.00000000, 1.07462687, 1.00000000]]\n>>> print(dec_forward)\n[[0.50000000, 0.00000000, 0.83333333, 0.52238806, 0.64369311, 0.00000000, 0.83333333 0.52238806]\n [0.50000000, 1.00000000, 0.16666667, 0.47761194, 0.35630689, 1.00000000, 0.16666667 0.47761194]]\n\n>>> pre_lp, pre_states = hmm.predict('viterbi', sim_symbols)\n>>> print(pre_lp)\n-13.24482936\n>>> print(pre_states)\n['B', 'A', 'B', 'A', 'B', 'A', 'B']\n```\n\nBelow a few examples of `HiddenMarkovModel` plotting functions; in order to display the output of plots immediately, the [interactive mode](https://matplotlib.org/stable/users/interactive.html#interactive-mode) of [Matplotlib](https://matplotlib.org/) must be turned on:\n\n```console\n>>> plot_graph(hmm, dpi=300)\n>>> plot_sequence(hmm, 10, plot_type='histogram', dpi=300)\n>>> plot_sequence(hmm, 10, plot_type='heatmap', dpi=300)\n>>> plot_sequence(hmm, 10, plot_type='matrix', dpi=300)\n>>> plot_trellis(hmm, 10, dpi=300)\n```\n\n![Screenshots](https://i.imgur.com/rSNUbdX.gif)\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A full-featured and lightweight library for discrete-time Markov chains analysis.",
    "version": "8.6.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/TommasoBelluzzo/PyDTMC/issues",
        "Donation": "https://www.paypal.com/donate?hosted_button_id=D8LH6DNYN7EN8",
        "Homepage": "https://github.com/TommasoBelluzzo/PyDTMC"
    },
    "split_keywords": [
        "markov-chain",
        "markov-chains",
        "markov-model",
        "markov-models",
        "markov-state-model",
        "markov-state-models",
        "hidden-markov-model",
        "hidden-markov-models",
        "mathematics",
        "statistics",
        "probability",
        "stochastic-process",
        "stochastic-processes",
        "analysis",
        "fitting",
        "simulation"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9f42fd12ba9a3dd3cc4c07fab41bd868fcf00fa10e245bf489e539d4e786a78a",
                "md5": "85d98c5629d8ba04a6edfdf63bca4f6a",
                "sha256": "e7005c531f4d7308898e987ed6fb5a94111ce9fdb53644d0c6be3a847f4955c8"
            },
            "downloads": -1,
            "filename": "PyDTMC-8.6.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "85d98c5629d8ba04a6edfdf63bca4f6a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 76508,
            "upload_time": "2024-03-18T01:28:28",
            "upload_time_iso_8601": "2024-03-18T01:28:28.003389Z",
            "url": "https://files.pythonhosted.org/packages/9f/42/fd12ba9a3dd3cc4c07fab41bd868fcf00fa10e245bf489e539d4e786a78a/PyDTMC-8.6.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "aa67c8fab1ae44b40714ac2daf695622d69173b59568a39fb07c9afc8a6ac9f0",
                "md5": "78f9a7dbb8b9b12ee4bcab26976c3265",
                "sha256": "5b75671c9f6ed494c1a0a94e7a465909c8d6361eb7e97036cf02da7555e5fa1d"
            },
            "downloads": -1,
            "filename": "PyDTMC-8.6.0.tar.gz",
            "has_sig": false,
            "md5_digest": "78f9a7dbb8b9b12ee4bcab26976c3265",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 129029,
            "upload_time": "2024-03-18T01:28:31",
            "upload_time_iso_8601": "2024-03-18T01:28:31.412716Z",
            "url": "https://files.pythonhosted.org/packages/aa/67/c8fab1ae44b40714ac2daf695622d69173b59568a39fb07c9afc8a6ac9f0/PyDTMC-8.6.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-18 01:28:31",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "TommasoBelluzzo",
    "github_project": "PyDTMC",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "pydtmc"
}
        
Elapsed time: 0.19994s