PyDataforge


NamePyDataforge JSON
Version 1.0.9 PyPI version JSON
download
home_pageNone
SummaryNone
upload_time2024-08-10 07:10:52
maintainerNone
docs_urlNone
authorGuipeng Wei
requires_pythonNone
licenseMIT License
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            This is a package for removing sensitive information from data, which utilizes automatic encoder, one-dimensional convolutional layer and bidirectional generative adversarial network to build a model to generate high-quality data.

It provides:

 - efficient feature extraction using multi-layer convolution
 - novel bidirectional generative adversarial network
 - secure sensitive information protection mechanism
 - high-quality data generation for practical applications
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "PyDataforge",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "Guipeng Wei",
    "author_email": "18316734738@163.com",
    "download_url": "https://files.pythonhosted.org/packages/93/2c/d59758f3ec0f66d2bb151ed718a5c8fbd77e2af7381f160b66b5c292c5d5/PyDataforge-1.0.9.tar.gz",
    "platform": "all",
    "description": "This is a package for removing sensitive information from data, which utilizes automatic encoder, one-dimensional convolutional layer and bidirectional generative adversarial network to build a model to generate high-quality data.\n\nIt provides:\n\n - efficient feature extraction using multi-layer convolution\n - novel bidirectional generative adversarial network\n - secure sensitive information protection mechanism\n - high-quality data generation for practical applications",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": null,
    "version": "1.0.9",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "932cd59758f3ec0f66d2bb151ed718a5c8fbd77e2af7381f160b66b5c292c5d5",
                "md5": "c1b3bf67af1811b9d9b4044037300ea2",
                "sha256": "109bc56efa94decf5402eb830b26eada6c642c375587975683f0700e38815c1a"
            },
            "downloads": -1,
            "filename": "PyDataforge-1.0.9.tar.gz",
            "has_sig": false,
            "md5_digest": "c1b3bf67af1811b9d9b4044037300ea2",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 7176,
            "upload_time": "2024-08-10T07:10:52",
            "upload_time_iso_8601": "2024-08-10T07:10:52.348976Z",
            "url": "https://files.pythonhosted.org/packages/93/2c/d59758f3ec0f66d2bb151ed718a5c8fbd77e2af7381f160b66b5c292c5d5/PyDataforge-1.0.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-10 07:10:52",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "pydataforge"
}
        
Elapsed time: 0.29118s