PyHaste


NamePyHaste JSON
Version 1.1.2 PyPI version JSON
download
home_pagehttps://github.com/cocreators-ee/pyhaste/
SummaryPython code speed analyzer
upload_time2024-04-11 15:46:13
maintainerNone
docs_urlNone
authorJanne Enberg
requires_python<4.0,>=3.11
licenseBSD-3-Clause
keywords performance measuring benchmark benchmarking analyzer
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # PyHaste

[![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/cocreators-ee/pyhaste/publish.yaml)](https://github.com/cocreators-ee/pyhaste/actions/workflows/publish.yaml)
[![Code style: ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)
[![Pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://github.com/cocreators-ee/pyhaste/blob/master/.pre-commit-config.yaml)
[![PyPI](https://img.shields.io/pypi/v/pyhaste)](https://pypi.org/project/pyhaste/)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/pyhaste)](https://pypi.org/project/pyhaste/)
[![License: BSD 3-Clause](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause)

Python code speed analyzer.

![PyHaste screenshot](https://github.com/cocreators-ee/pyhaste/raw/main/pyhaste.png)

Monitor the performance of your scripts etc. tools and understand where time is spent.

## Installation

It's a Python library, what do you expect?

```bash
pip install pyhaste
# OR
poetry add pyhaste
```

## Usage

To measure your code, `pyhaste` exports a `measure` context manager, give it a name as an argument. Once you want a report call `report` from `pyhaste`.

```python
import time

from pyhaste import measure, report, measure_wrap


@measure_wrap("prepare_task")
def prepare_task():
  time.sleep(0.1)


@measure_wrap("find_items")
def find_items():
  return [1, 2, 3]


@measure_wrap("process_item")
def process_item(item):
  time.sleep(item * 0.1)


with measure("task"):
  prepare_task()

  for item in find_items():
    process_item(item)

time.sleep(0.01)
report()

```

```
────────────────────────── PyHaste report ───────────────────────────

┏━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━┳━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┓
┃ Name               ┃    Time ┃  Tot % ┃  Rel % ┃ Calls ┃ Per call ┃
┡━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━╇━━━━━━━━╇━━━━━━━━╇━━━━━━━╇━━━━━━━━━━┩
│ task               │ 0.700 s │ 98.58% │        │     1 │  0.700 s │
│ task ›process_item │ 0.600 s │ 84.49% │ 85.70% │     3 │  0.200 s │
│ task ›prepare_task │ 0.100 s │ 14.09% │ 14.29% │     1 │  0.100 s │
│ Unmeasured         │ 0.010 s │  1.42% │        │       │          │
│ task ›find_items   │ 0.000 s │  0.00% │  0.00% │     1 │  0.000 s │
├────────────────────┼─────────┼────────┼────────┼───────┼──────────┤
│ Total              │ 0.710 s │   100% │        │       │          │
└────────────────────┴─────────┴────────┴────────┴───────┴──────────┘
```

In case you need more complex analysis, you might benefit from `pyhaste.Analyzer` and creating your own instances, e.g. for measuring time spent on separate tasks in a longer running job:

```python
import time
from random import uniform
from pyhaste import Analyzer

for item in [1, 2, 3]:
  analyzer = Analyzer()
  with analyzer.measure(f"process_item({item})"):
    with analyzer.measure("db.find"):
      time.sleep(uniform(0.04, 0.06) * item)
    with analyzer.measure("calculate"):
      with analyzer.measure("guestimate"):
        with analyzer.measure("do_math"):
          time.sleep(uniform(0.1, 0.15) * item)
    with analyzer.measure("save"):
      time.sleep(uniform(0.05, 0.075) * item)
  time.sleep(uniform(0.01, 0.025) * item)
  analyzer.report()
```

```
────────────────────────────────────────── PyHaste report ──────────────────────────────────────────

┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┓
┃ Name                                            ┃    Time ┃  Tot % ┃   Rel % ┃ Calls ┃ Per call ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━┩
│ process_item(1)                                 │ 0.232 s │ 92.26% │         │     1 │  0.232 s │
│ process_item(1) ›calculate                      │ 0.122 s │ 48.38% │  52.44% │     1 │  0.122 s │
│ process_item(1) ›calculate ›guestimate          │ 0.122 s │ 48.38% │ 100.00% │     1 │  0.122 s │
│ process_item(1) ›calculate ›guestimate ›do_math │ 0.122 s │ 48.37% │  99.99% │     1 │  0.122 s │
│ process_item(1) ›save                           │ 0.058 s │ 23.23% │  25.18% │     1 │  0.058 s │
│ process_item(1) ›db.find                        │ 0.052 s │ 20.64% │  22.37% │     1 │  0.052 s │
│ Unmeasured                                      │ 0.019 s │  7.74% │         │       │          │
├─────────────────────────────────────────────────┼─────────┼────────┼─────────┼───────┼──────────┤
│ Total                                           │ 0.251 s │   100% │         │       │          │
└─────────────────────────────────────────────────┴─────────┴────────┴─────────┴───────┴──────────┘

────────────────────────────────────────── PyHaste report ──────────────────────────────────────────

┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┓
┃ Name                                            ┃    Time ┃  Tot % ┃   Rel % ┃ Calls ┃ Per call ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━┩
│ process_item(2)                                 │ 0.511 s │ 94.66% │         │     1 │  0.511 s │
│ process_item(2) ›calculate                      │ 0.288 s │ 53.38% │  56.40% │     1 │  0.288 s │
│ process_item(2) ›calculate ›guestimate          │ 0.288 s │ 53.38% │ 100.00% │     1 │  0.288 s │
│ process_item(2) ›calculate ›guestimate ›do_math │ 0.288 s │ 53.38% │  99.99% │     1 │  0.288 s │
│ process_item(2) ›save                           │ 0.125 s │ 23.10% │  24.41% │     1 │  0.125 s │
│ process_item(2) ›db.find                        │ 0.098 s │ 18.16% │  19.19% │     1 │  0.098 s │
│ Unmeasured                                      │ 0.029 s │  5.34% │         │       │          │
├─────────────────────────────────────────────────┼─────────┼────────┼─────────┼───────┼──────────┤
│ Total                                           │ 0.540 s │   100% │         │       │          │
└─────────────────────────────────────────────────┴─────────┴────────┴─────────┴───────┴──────────┘

────────────────────────────────────────── PyHaste report ──────────────────────────────────────────

┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┓
┃ Name                                            ┃    Time ┃  Tot % ┃   Rel % ┃ Calls ┃ Per call ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━┩
│ process_item(3)                                 │ 0.749 s │ 93.21% │         │     1 │  0.749 s │
│ process_item(3) ›calculate                      │ 0.368 s │ 45.84% │  49.18% │     1 │  0.368 s │
│ process_item(3) ›calculate ›guestimate          │ 0.368 s │ 45.84% │ 100.00% │     1 │  0.368 s │
│ process_item(3) ›calculate ›guestimate ›do_math │ 0.368 s │ 45.84% │ 100.00% │     1 │  0.368 s │
│ process_item(3) ›save                           │ 0.217 s │ 27.07% │  29.04% │     1 │  0.217 s │
│ process_item(3) ›db.find                        │ 0.163 s │ 20.29% │  21.77% │     1 │  0.163 s │
│ Unmeasured                                      │ 0.055 s │  6.79% │         │       │          │
├─────────────────────────────────────────────────┼─────────┼────────┼─────────┼───────┼──────────┤
│ Total                                           │ 0.803 s │   100% │         │       │          │
└─────────────────────────────────────────────────┴─────────┴────────┴─────────┴───────┴──────────┘
```

## Development

Issues and PRs are welcome!

Please open an issue first to discuss the idea before sending a PR so that you know if it would be wanted or needs
re-thinking or if you should just make a fork for yourself.

For local development, make sure you install [pre-commit](https://pre-commit.com/#install), then run:

```bash
pre-commit install
poetry install
poetry run ptw .
poetry run python example.py

cd fastapi_example
poetry run python example.py
```

## License

The code is released under the BSD 3-Clause license. Details in the [LICENSE.md](./LICENSE.md) file.

# Financial support

This project has been made possible thanks to [Cocreators](https://cocreators.ee) and [Lietu](https://lietu.net). You
can help us continue our open source work by supporting us
on [Buy me a coffee](https://www.buymeacoffee.com/cocreators).

[!["Buy Me A Coffee"](https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png)](https://www.buymeacoffee.com/cocreators)


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/cocreators-ee/pyhaste/",
    "name": "PyHaste",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.11",
    "maintainer_email": null,
    "keywords": "performance, measuring, benchmark, benchmarking, analyzer",
    "author": "Janne Enberg",
    "author_email": "janne.enberg@lietu.net",
    "download_url": "https://files.pythonhosted.org/packages/e1/1c/3e569f6f60e2869e12e68dd15668701185381e8710a71a46cbded3605d99/pyhaste-1.1.2.tar.gz",
    "platform": null,
    "description": "# PyHaste\n\n[![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/cocreators-ee/pyhaste/publish.yaml)](https://github.com/cocreators-ee/pyhaste/actions/workflows/publish.yaml)\n[![Code style: ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)\n[![Pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://github.com/cocreators-ee/pyhaste/blob/master/.pre-commit-config.yaml)\n[![PyPI](https://img.shields.io/pypi/v/pyhaste)](https://pypi.org/project/pyhaste/)\n[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/pyhaste)](https://pypi.org/project/pyhaste/)\n[![License: BSD 3-Clause](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause)\n\nPython code speed analyzer.\n\n![PyHaste screenshot](https://github.com/cocreators-ee/pyhaste/raw/main/pyhaste.png)\n\nMonitor the performance of your scripts etc. tools and understand where time is spent.\n\n## Installation\n\nIt's a Python library, what do you expect?\n\n```bash\npip install pyhaste\n# OR\npoetry add pyhaste\n```\n\n## Usage\n\nTo measure your code, `pyhaste` exports a `measure` context manager, give it a name as an argument. Once you want a report call `report` from `pyhaste`.\n\n```python\nimport time\n\nfrom pyhaste import measure, report, measure_wrap\n\n\n@measure_wrap(\"prepare_task\")\ndef prepare_task():\n  time.sleep(0.1)\n\n\n@measure_wrap(\"find_items\")\ndef find_items():\n  return [1, 2, 3]\n\n\n@measure_wrap(\"process_item\")\ndef process_item(item):\n  time.sleep(item * 0.1)\n\n\nwith measure(\"task\"):\n  prepare_task()\n\n  for item in find_items():\n    process_item(item)\n\ntime.sleep(0.01)\nreport()\n\n```\n\n```\n\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500 PyHaste report \u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n\n\u250f\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2513\n\u2503 Name               \u2503    Time \u2503  Tot % \u2503  Rel % \u2503 Calls \u2503 Per call \u2503\n\u2521\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2529\n\u2502 task               \u2502 0.700 s \u2502 98.58% \u2502        \u2502     1 \u2502  0.700 s \u2502\n\u2502 task \u203aprocess_item \u2502 0.600 s \u2502 84.49% \u2502 85.70% \u2502     3 \u2502  0.200 s \u2502\n\u2502 task \u203aprepare_task \u2502 0.100 s \u2502 14.09% \u2502 14.29% \u2502     1 \u2502  0.100 s \u2502\n\u2502 Unmeasured         \u2502 0.010 s \u2502  1.42% \u2502        \u2502       \u2502          \u2502\n\u2502 task \u203afind_items   \u2502 0.000 s \u2502  0.00% \u2502  0.00% \u2502     1 \u2502  0.000 s \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 Total              \u2502 0.710 s \u2502   100% \u2502        \u2502       \u2502          \u2502\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n```\n\nIn case you need more complex analysis, you might benefit from `pyhaste.Analyzer` and creating your own instances, e.g. for measuring time spent on separate tasks in a longer running job:\n\n```python\nimport time\nfrom random import uniform\nfrom pyhaste import Analyzer\n\nfor item in [1, 2, 3]:\n  analyzer = Analyzer()\n  with analyzer.measure(f\"process_item({item})\"):\n    with analyzer.measure(\"db.find\"):\n      time.sleep(uniform(0.04, 0.06) * item)\n    with analyzer.measure(\"calculate\"):\n      with analyzer.measure(\"guestimate\"):\n        with analyzer.measure(\"do_math\"):\n          time.sleep(uniform(0.1, 0.15) * item)\n    with analyzer.measure(\"save\"):\n      time.sleep(uniform(0.05, 0.075) * item)\n  time.sleep(uniform(0.01, 0.025) * item)\n  analyzer.report()\n```\n\n```\n\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500 PyHaste report \u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n\n\u250f\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2513\n\u2503 Name                                            \u2503    Time \u2503  Tot % \u2503   Rel % \u2503 Calls \u2503 Per call \u2503\n\u2521\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2529\n\u2502 process_item(1)                                 \u2502 0.232 s \u2502 92.26% \u2502         \u2502     1 \u2502  0.232 s \u2502\n\u2502 process_item(1) \u203acalculate                      \u2502 0.122 s \u2502 48.38% \u2502  52.44% \u2502     1 \u2502  0.122 s \u2502\n\u2502 process_item(1) \u203acalculate \u203aguestimate          \u2502 0.122 s \u2502 48.38% \u2502 100.00% \u2502     1 \u2502  0.122 s \u2502\n\u2502 process_item(1) \u203acalculate \u203aguestimate \u203ado_math \u2502 0.122 s \u2502 48.37% \u2502  99.99% \u2502     1 \u2502  0.122 s \u2502\n\u2502 process_item(1) \u203asave                           \u2502 0.058 s \u2502 23.23% \u2502  25.18% \u2502     1 \u2502  0.058 s \u2502\n\u2502 process_item(1) \u203adb.find                        \u2502 0.052 s \u2502 20.64% \u2502  22.37% \u2502     1 \u2502  0.052 s \u2502\n\u2502 Unmeasured                                      \u2502 0.019 s \u2502  7.74% \u2502         \u2502       \u2502          \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 Total                                           \u2502 0.251 s \u2502   100% \u2502         \u2502       \u2502          \u2502\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n\n\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500 PyHaste report \u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n\n\u250f\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2513\n\u2503 Name                                            \u2503    Time \u2503  Tot % \u2503   Rel % \u2503 Calls \u2503 Per call \u2503\n\u2521\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2529\n\u2502 process_item(2)                                 \u2502 0.511 s \u2502 94.66% \u2502         \u2502     1 \u2502  0.511 s \u2502\n\u2502 process_item(2) \u203acalculate                      \u2502 0.288 s \u2502 53.38% \u2502  56.40% \u2502     1 \u2502  0.288 s \u2502\n\u2502 process_item(2) \u203acalculate \u203aguestimate          \u2502 0.288 s \u2502 53.38% \u2502 100.00% \u2502     1 \u2502  0.288 s \u2502\n\u2502 process_item(2) \u203acalculate \u203aguestimate \u203ado_math \u2502 0.288 s \u2502 53.38% \u2502  99.99% \u2502     1 \u2502  0.288 s \u2502\n\u2502 process_item(2) \u203asave                           \u2502 0.125 s \u2502 23.10% \u2502  24.41% \u2502     1 \u2502  0.125 s \u2502\n\u2502 process_item(2) \u203adb.find                        \u2502 0.098 s \u2502 18.16% \u2502  19.19% \u2502     1 \u2502  0.098 s \u2502\n\u2502 Unmeasured                                      \u2502 0.029 s \u2502  5.34% \u2502         \u2502       \u2502          \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 Total                                           \u2502 0.540 s \u2502   100% \u2502         \u2502       \u2502          \u2502\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n\n\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500 PyHaste report \u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n\n\u250f\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2513\n\u2503 Name                                            \u2503    Time \u2503  Tot % \u2503   Rel % \u2503 Calls \u2503 Per call \u2503\n\u2521\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2529\n\u2502 process_item(3)                                 \u2502 0.749 s \u2502 93.21% \u2502         \u2502     1 \u2502  0.749 s \u2502\n\u2502 process_item(3) \u203acalculate                      \u2502 0.368 s \u2502 45.84% \u2502  49.18% \u2502     1 \u2502  0.368 s \u2502\n\u2502 process_item(3) \u203acalculate \u203aguestimate          \u2502 0.368 s \u2502 45.84% \u2502 100.00% \u2502     1 \u2502  0.368 s \u2502\n\u2502 process_item(3) \u203acalculate \u203aguestimate \u203ado_math \u2502 0.368 s \u2502 45.84% \u2502 100.00% \u2502     1 \u2502  0.368 s \u2502\n\u2502 process_item(3) \u203asave                           \u2502 0.217 s \u2502 27.07% \u2502  29.04% \u2502     1 \u2502  0.217 s \u2502\n\u2502 process_item(3) \u203adb.find                        \u2502 0.163 s \u2502 20.29% \u2502  21.77% \u2502     1 \u2502  0.163 s \u2502\n\u2502 Unmeasured                                      \u2502 0.055 s \u2502  6.79% \u2502         \u2502       \u2502          \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 Total                                           \u2502 0.803 s \u2502   100% \u2502         \u2502       \u2502          \u2502\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n```\n\n## Development\n\nIssues and PRs are welcome!\n\nPlease open an issue first to discuss the idea before sending a PR so that you know if it would be wanted or needs\nre-thinking or if you should just make a fork for yourself.\n\nFor local development, make sure you install [pre-commit](https://pre-commit.com/#install), then run:\n\n```bash\npre-commit install\npoetry install\npoetry run ptw .\npoetry run python example.py\n\ncd fastapi_example\npoetry run python example.py\n```\n\n## License\n\nThe code is released under the BSD 3-Clause license. Details in the [LICENSE.md](./LICENSE.md) file.\n\n# Financial support\n\nThis project has been made possible thanks to [Cocreators](https://cocreators.ee) and [Lietu](https://lietu.net). You\ncan help us continue our open source work by supporting us\non [Buy me a coffee](https://www.buymeacoffee.com/cocreators).\n\n[![\"Buy Me A Coffee\"](https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png)](https://www.buymeacoffee.com/cocreators)\n\n",
    "bugtrack_url": null,
    "license": "BSD-3-Clause",
    "summary": "Python code speed analyzer",
    "version": "1.1.2",
    "project_urls": {
        "Documentation": "https://github.com/cocreators-ee/pyhaste/",
        "Homepage": "https://github.com/cocreators-ee/pyhaste/",
        "Repository": "https://github.com/cocreators-ee/pyhaste/"
    },
    "split_keywords": [
        "performance",
        " measuring",
        " benchmark",
        " benchmarking",
        " analyzer"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d7708e05ac6b9b4b482c055161325facec579c83072540c3e6eefa8c3edd1c29",
                "md5": "d7810421e90bd01cdd860dbc0f94c017",
                "sha256": "dfe3132d78e99e5c708d7c34b0fe8c56cca0a5e4f20ddb2d4513db665662a141"
            },
            "downloads": -1,
            "filename": "pyhaste-1.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d7810421e90bd01cdd860dbc0f94c017",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.11",
            "size": 6118,
            "upload_time": "2024-04-11T15:46:12",
            "upload_time_iso_8601": "2024-04-11T15:46:12.182464Z",
            "url": "https://files.pythonhosted.org/packages/d7/70/8e05ac6b9b4b482c055161325facec579c83072540c3e6eefa8c3edd1c29/pyhaste-1.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e11c3e569f6f60e2869e12e68dd15668701185381e8710a71a46cbded3605d99",
                "md5": "1c70a18d685ee146d742e6881aa1d2e4",
                "sha256": "bd55f4cac260ad241618e03d3ddf214e7bc6c158d23771b30a913d7fc8437b18"
            },
            "downloads": -1,
            "filename": "pyhaste-1.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "1c70a18d685ee146d742e6881aa1d2e4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.11",
            "size": 5524,
            "upload_time": "2024-04-11T15:46:13",
            "upload_time_iso_8601": "2024-04-11T15:46:13.863202Z",
            "url": "https://files.pythonhosted.org/packages/e1/1c/3e569f6f60e2869e12e68dd15668701185381e8710a71a46cbded3605d99/pyhaste-1.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-11 15:46:13",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "cocreators-ee",
    "github_project": "pyhaste",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "pyhaste"
}
        
Elapsed time: 0.30788s