PyMatting


NamePyMatting JSON
Version 1.1.13 PyPI version JSON
download
home_pagehttps://pymatting.github.io
SummaryPython package for alpha matting.
upload_time2024-11-13 07:39:49
maintainerNone
docs_urlNone
authorThe PyMatting Developers
requires_python>=3
licenseMIT
keywords alpha matting
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # PyMatting: A Python Library for Alpha Matting
[![License: MIT](https://img.shields.io/github/license/pymatting/pymatting?color=brightgreen)](https://opensource.org/licenses/MIT)
[![CI](https://img.shields.io/github/actions/workflow/status/pymatting/pymatting/.github/workflows/tests.yml?branch=master)](https://github.com/pymatting/pymatting/actions?query=workflow%3Atests)
[![PyPI](https://img.shields.io/pypi/v/pymatting)](https://pypi.org/project/PyMatting/)
[![JOSS](https://joss.theoj.org/papers/9766cab65bfbf07a70c8a835edd3875a/status.svg)](https://joss.theoj.org/papers/9766cab65bfbf07a70c8a835edd3875a)
[![Gitter](https://img.shields.io/gitter/room/pymatting/pymatting)](https://gitter.im/pymatting/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge)

We introduce the PyMatting package for Python which implements various methods to solve the alpha matting problem.

- **Website and Documentation:** [https://pymatting.github.io/](https://pymatting.github.io)
- **Benchmarks:**  [https://pymatting.github.io/benchmarks.html](https://pymatting.github.io/benchmarks.html)

![Lemur](https://github.com/pymatting/pymatting/raw/master/data/lemur/lemur_at_the_beach.png)

Given an input image and a hand-drawn trimap (top row), alpha matting estimates the alpha channel of a foreground object which can then be composed onto a different background (bottom row).

PyMatting provides:
- Alpha matting implementations for:
  - Closed Form Alpha Matting [[1]](#1)
  - Large Kernel Matting [[2]](#2)
  - KNN Matting [[3]](#3)
  - Learning Based Digital Matting [[4]](#4)
  - Random Walk Matting [[5]](#5)
  - Shared Sampling Matting [[6]](#6)
- Foreground estimation implementations for:
  - Closed Form Foreground Estimation [[1]](#1)
  - Fast Multi-Level Foreground Estimation (CPU, CUDA and OpenCL) [[7]](#7)
- Fast multithreaded KNN search
- Preconditioners to accelerate the convergence rate of conjugate gradient descent:
  - The *incomplete thresholded Cholesky decomposition* (*Incomplete* is part of the name. The implementation is quite complete.)
  - The V-Cycle Geometric Multigrid preconditioner
- Readable code leveraging [NumPy](https://numpy.org/), [SciPy](https://scipy.org/) and [Numba](http://numba.pydata.org/)

## Getting Started

### Requirements

Minimal requirements
* numpy>=1.16.0
* pillow>=5.2.0
* numba>=0.47.0
* scipy>=1.1.0

Additional requirements for GPU support
* cupy-cuda90>=6.5.0 or similar
* pyopencl>=2019.1.2

Requirements to run the tests
* pytest>=5.3.4

### Installation with PyPI

```bash
pip3 install pymatting
```

### Installation from Source

```bash
git clone https://github.com/pymatting/pymatting
cd pymatting
pip3 install .
```

## Example

```python
# First import will take a minute due to compilation
from pymatting import cutout

cutout(
    # input image path
    "data/lemur/lemur.png",
    # input trimap path
    "data/lemur/lemur_trimap.png",
    # output cutout path
    "lemur_cutout.png")
```

[More advanced examples](https://pymatting.github.io/examples.html)

## Trimap Construction

All implemented methods rely on trimaps which roughly classify the image into foreground, background and unknown regions.
Trimaps are expected to be `numpy.ndarrays` of type `np.float64`  having the same shape as the input image with only one color-channel.
Trimap values of 0.0 denote pixels which are 100% background.
Similarly, trimap values of 1.0 denote pixels which are 100% foreground.
All other values indicate unknown pixels which will be estimated by the algorithm.


## Testing

Run the tests from the main directory:
```
pip3 install -r requirements_tests.txt
ppytest
```

Currently 89% of the code is covered by tests.

## Upgrade

```bash
pip3 install --upgrade pymatting
python3 -c "import pymatting"
```

## Bug Reports, Questions and Pull-Requests

Please, see [our community guidelines](https://github.com/pymatting/pymatting/blob/master/CONTRIBUTING.md).

## Authors

- **Thomas Germer**
- **Tobias Uelwer**
- **Stefan Conrad**
- **Stefan Harmeling**

See also the list of [contributors](https://github.com/pymatting/pymatting/contributors) who participated in this project.

## Projects using PyMatting

* [Rembg](https://github.com/danielgatis/rembg) - an excellent tool for removing image backgrounds.
* [PaddleSeg](https://github.com/PaddlePaddle/PaddleSeg) - a library for a wide range of image segmentation tasks.
* [chaiNNer](https://github.com/chaiNNer-org/chaiNNer) - a node-based image processing GUI.
* [LSA-Matting](https://github.com/kfeng123/LSA-Matting) - improving deep image matting via local smoothness assumption.

## License

This project is licensed under the MIT License - see the [LICENSE.md](LICENSE.md) file for details

## Citing

If you found PyMatting to be useful for your work, please consider citing our [paper](https://doi.org/10.21105/joss.02481):

```
@article{Germer2020,
  doi = {10.21105/joss.02481},
  url = {https://doi.org/10.21105/joss.02481},
  year = {2020},
  publisher = {The Open Journal},
  volume = {5},
  number = {54},
  pages = {2481},
  author = {Thomas Germer and Tobias Uelwer and Stefan Conrad and Stefan Harmeling},
  title = {PyMatting: A Python Library for Alpha Matting},
  journal = {Journal of Open Source Software}
}
```

## References

<a id="1">[1]</a>
Anat Levin, Dani Lischinski, and Yair Weiss. A closed-form solution to natural image matting. IEEE transactions on pattern analysis and machine intelligence, 30(2):228–242, 2007.

<a id="2">[2]</a>
Kaiming He, Jian Sun, and Xiaoou Tang. Fast matting using large kernel matting laplacian matrices. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2165–2172. IEEE, 2010.

<a id="3">[3]</a>
Qifeng Chen, Dingzeyu Li, and Chi-Keung Tang. Knn matting. IEEE transactions on pattern analysis and machine intelligence, 35(9):2175–2188, 2013.

<a id="4">[4]</a>
Yuanjie Zheng and Chandra Kambhamettu. Learning based digital matting. In 2009 IEEE 12th international conference on computer vision, 889–896. IEEE, 2009.

<a id="5">[5]</a>
Leo Grady, Thomas Schiwietz, Shmuel Aharon, and Rüdiger Westermann. Random walks for interactive alpha-matting. In Proceedings of VIIP, volume 2005, 423–429. 2005.

<a id="6">[6]</a>
Eduardo S. L. Gastal and Manuel M. Oliveira. "Shared Sampling for Real-Time Alpha Matting". Computer Graphics Forum. Volume 29 (2010), Number 2, Proceedings of Eurographics 2010, pp. 575-584.

<a id="7">[7]</a>
Germer, T., Uelwer, T., Conrad, S., & Harmeling, S. (2020). Fast Multi-Level Foreground Estimation. arXiv preprint arXiv:2006.14970.

Lemur image by Mathias Appel from https://www.flickr.com/photos/mathiasappel/25419442300/ licensed under [CC0 1.0 Universal (CC0 1.0) Public Domain License](https://creativecommons.org/publicdomain/zero/1.0/).

            

Raw data

            {
    "_id": null,
    "home_page": "https://pymatting.github.io",
    "name": "PyMatting",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3",
    "maintainer_email": null,
    "keywords": "alpha matting",
    "author": "The PyMatting Developers",
    "author_email": "pymatting@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/35/87/d706da195b6e27d20455404aeb6e47325ff73dea782252124800272535fd/pymatting-1.1.13.tar.gz",
    "platform": null,
    "description": "# PyMatting: A Python Library for Alpha Matting\n[![License: MIT](https://img.shields.io/github/license/pymatting/pymatting?color=brightgreen)](https://opensource.org/licenses/MIT)\n[![CI](https://img.shields.io/github/actions/workflow/status/pymatting/pymatting/.github/workflows/tests.yml?branch=master)](https://github.com/pymatting/pymatting/actions?query=workflow%3Atests)\n[![PyPI](https://img.shields.io/pypi/v/pymatting)](https://pypi.org/project/PyMatting/)\n[![JOSS](https://joss.theoj.org/papers/9766cab65bfbf07a70c8a835edd3875a/status.svg)](https://joss.theoj.org/papers/9766cab65bfbf07a70c8a835edd3875a)\n[![Gitter](https://img.shields.io/gitter/room/pymatting/pymatting)](https://gitter.im/pymatting/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge)\n\nWe introduce the PyMatting package for Python which implements various methods to solve the alpha matting problem.\n\n- **Website and Documentation:** [https://pymatting.github.io/](https://pymatting.github.io)\n- **Benchmarks:**  [https://pymatting.github.io/benchmarks.html](https://pymatting.github.io/benchmarks.html)\n\n![Lemur](https://github.com/pymatting/pymatting/raw/master/data/lemur/lemur_at_the_beach.png)\n\nGiven an input image and a hand-drawn trimap (top row), alpha matting estimates the alpha channel of a foreground object which can then be composed onto a different background (bottom row).\n\nPyMatting provides:\n- Alpha matting implementations for:\n  - Closed Form Alpha Matting [[1]](#1)\n  - Large Kernel Matting [[2]](#2)\n  - KNN Matting [[3]](#3)\n  - Learning Based Digital Matting [[4]](#4)\n  - Random Walk Matting [[5]](#5)\n  - Shared Sampling Matting [[6]](#6)\n- Foreground estimation implementations for:\n  - Closed Form Foreground Estimation [[1]](#1)\n  - Fast Multi-Level Foreground Estimation (CPU, CUDA and OpenCL) [[7]](#7)\n- Fast multithreaded KNN search\n- Preconditioners to accelerate the convergence rate of conjugate gradient descent:\n  - The *incomplete thresholded Cholesky decomposition* (*Incomplete* is part of the name. The implementation is quite complete.)\n  - The V-Cycle Geometric Multigrid preconditioner\n- Readable code leveraging [NumPy](https://numpy.org/), [SciPy](https://scipy.org/) and [Numba](http://numba.pydata.org/)\n\n## Getting Started\n\n### Requirements\n\nMinimal requirements\n* numpy>=1.16.0\n* pillow>=5.2.0\n* numba>=0.47.0\n* scipy>=1.1.0\n\nAdditional requirements for GPU support\n* cupy-cuda90>=6.5.0 or similar\n* pyopencl>=2019.1.2\n\nRequirements to run the tests\n* pytest>=5.3.4\n\n### Installation with PyPI\n\n```bash\npip3 install pymatting\n```\n\n### Installation from Source\n\n```bash\ngit clone https://github.com/pymatting/pymatting\ncd pymatting\npip3 install .\n```\n\n## Example\n\n```python\n# First import will take a minute due to compilation\nfrom pymatting import cutout\n\ncutout(\n    # input image path\n    \"data/lemur/lemur.png\",\n    # input trimap path\n    \"data/lemur/lemur_trimap.png\",\n    # output cutout path\n    \"lemur_cutout.png\")\n```\n\n[More advanced examples](https://pymatting.github.io/examples.html)\n\n## Trimap Construction\n\nAll implemented methods rely on trimaps which roughly classify the image into foreground, background and unknown regions.\nTrimaps are expected to be `numpy.ndarrays` of type `np.float64`  having the same shape as the input image with only one color-channel.\nTrimap values of 0.0 denote pixels which are 100% background.\nSimilarly, trimap values of 1.0 denote pixels which are 100% foreground.\nAll other values indicate unknown pixels which will be estimated by the algorithm.\n\n\n## Testing\n\nRun the tests from the main directory:\n```\npip3 install -r requirements_tests.txt\nppytest\n```\n\nCurrently 89% of the code is covered by tests.\n\n## Upgrade\n\n```bash\npip3 install --upgrade pymatting\npython3 -c \"import pymatting\"\n```\n\n## Bug Reports, Questions and Pull-Requests\n\nPlease, see [our community guidelines](https://github.com/pymatting/pymatting/blob/master/CONTRIBUTING.md).\n\n## Authors\n\n- **Thomas Germer**\n- **Tobias Uelwer**\n- **Stefan Conrad**\n- **Stefan Harmeling**\n\nSee also the list of [contributors](https://github.com/pymatting/pymatting/contributors) who participated in this project.\n\n## Projects using PyMatting\n\n* [Rembg](https://github.com/danielgatis/rembg) - an excellent tool for removing image backgrounds.\n* [PaddleSeg](https://github.com/PaddlePaddle/PaddleSeg) - a library for a wide range of image segmentation tasks.\n* [chaiNNer](https://github.com/chaiNNer-org/chaiNNer) - a node-based image processing GUI.\n* [LSA-Matting](https://github.com/kfeng123/LSA-Matting) - improving deep image matting via local smoothness assumption.\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE.md](LICENSE.md) file for details\n\n## Citing\n\nIf you found PyMatting to be useful for your work, please consider citing our [paper](https://doi.org/10.21105/joss.02481):\n\n```\n@article{Germer2020,\n  doi = {10.21105/joss.02481},\n  url = {https://doi.org/10.21105/joss.02481},\n  year = {2020},\n  publisher = {The Open Journal},\n  volume = {5},\n  number = {54},\n  pages = {2481},\n  author = {Thomas Germer and Tobias Uelwer and Stefan Conrad and Stefan Harmeling},\n  title = {PyMatting: A Python Library for Alpha Matting},\n  journal = {Journal of Open Source Software}\n}\n```\n\n## References\n\n<a id=\"1\">[1]</a>\nAnat Levin, Dani Lischinski, and Yair Weiss. A closed-form solution to natural image matting. IEEE transactions on pattern analysis and machine intelligence, 30(2):228\u2013242, 2007.\n\n<a id=\"2\">[2]</a>\nKaiming He, Jian Sun, and Xiaoou Tang. Fast matting using large kernel matting laplacian matrices. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2165\u20132172. IEEE, 2010.\n\n<a id=\"3\">[3]</a>\nQifeng Chen, Dingzeyu Li, and Chi-Keung Tang. Knn matting. IEEE transactions on pattern analysis and machine intelligence, 35(9):2175\u20132188, 2013.\n\n<a id=\"4\">[4]</a>\nYuanjie Zheng and Chandra Kambhamettu. Learning based digital matting. In 2009 IEEE 12th international conference on computer vision, 889\u2013896. IEEE, 2009.\n\n<a id=\"5\">[5]</a>\nLeo Grady, Thomas Schiwietz, Shmuel Aharon, and R\u00fcdiger Westermann. Random walks for interactive alpha-matting. In Proceedings of VIIP, volume 2005, 423\u2013429. 2005.\n\n<a id=\"6\">[6]</a>\nEduardo S. L. Gastal and Manuel M. Oliveira. \"Shared Sampling for Real-Time Alpha Matting\". Computer Graphics Forum. Volume 29 (2010), Number 2, Proceedings of Eurographics 2010, pp. 575-584.\n\n<a id=\"7\">[7]</a>\nGermer, T., Uelwer, T., Conrad, S., & Harmeling, S. (2020). Fast Multi-Level Foreground Estimation. arXiv preprint arXiv:2006.14970.\n\nLemur image by Mathias Appel from https://www.flickr.com/photos/mathiasappel/25419442300/ licensed under [CC0 1.0 Universal (CC0 1.0) Public Domain License](https://creativecommons.org/publicdomain/zero/1.0/).\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Python package for alpha matting.",
    "version": "1.1.13",
    "project_urls": {
        "Homepage": "https://pymatting.github.io",
        "Source": "https://github.com/pymatting/pymatting"
    },
    "split_keywords": [
        "alpha",
        "matting"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e90e911b3b4c60a379ff538c9b83b340b16c27d192d1170d9d5f1f2ffd811082",
                "md5": "8cc51e6cc199dcf3adad4ee2e8fc4901",
                "sha256": "f14f00a783b826c20f2c3fab446cdf6d9b0bb03e694e422fc3a5f933e1ed36df"
            },
            "downloads": -1,
            "filename": "PyMatting-1.1.13-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8cc51e6cc199dcf3adad4ee2e8fc4901",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3",
            "size": 54519,
            "upload_time": "2024-11-13T07:39:47",
            "upload_time_iso_8601": "2024-11-13T07:39:47.383846Z",
            "url": "https://files.pythonhosted.org/packages/e9/0e/911b3b4c60a379ff538c9b83b340b16c27d192d1170d9d5f1f2ffd811082/PyMatting-1.1.13-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3587d706da195b6e27d20455404aeb6e47325ff73dea782252124800272535fd",
                "md5": "456c568f7a8f245b0afda6c681152686",
                "sha256": "2cdb7c4befacddef4d7adc2de8e34a272de639d608ae5c0a08613dfa42538101"
            },
            "downloads": -1,
            "filename": "pymatting-1.1.13.tar.gz",
            "has_sig": false,
            "md5_digest": "456c568f7a8f245b0afda6c681152686",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3",
            "size": 44010,
            "upload_time": "2024-11-13T07:39:49",
            "upload_time_iso_8601": "2024-11-13T07:39:49.276082Z",
            "url": "https://files.pythonhosted.org/packages/35/87/d706da195b6e27d20455404aeb6e47325ff73dea782252124800272535fd/pymatting-1.1.13.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-13 07:39:49",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pymatting",
    "github_project": "pymatting",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "pymatting"
}
        
Elapsed time: 2.87554s