# PyPRS: A Python Software Package for Parallel Ranking and Selection Procedures
**PyPRS** is a Python software package specifically developed to solve large-scale ranking and selection (R&S) problems in parallel computing environments. The underlying parallel computing framework is **Ray**. PyPRS incorporates four well-known parallel procedures:
- **The Good Selection Procedure (GSP)**
- **The Knockout-Tournament (KT) Procedure**
- **The Parallel Adaptive Survivor Selection (PASS) Procedure**
- **The Fixed-Budget Knockout-Tournament (FBKT) Procedure**
Users can also upload custom procedures to test and compare performance against these built-in procedures.
---
## 📋 Prerequisites
- Python **3.10** is recommended for optimal compatibility.
- Required packages: `ray==2.44.1`, `numpy`, `scipy`, `matplotlib`, `mrg32k3a_numba`. Install them using:
```bash
python -m pip install ray==2.44.1 numpy scipy matplotlib mrg32k3a_numba
```
## 📦 Installation
```bash
python -m pip install PyPRS
```
## 🖥️ How to use
To run PyPRS on a single computer, users just need to execute the **`GUI.py`** file located in the `UserInterface` package in a Python environment:
- If the PyPRS is downloaded from the source repository, users should first navigate to the parent folder of `PyPRS` folder and then execute the `python -m PyPRS.UserInterface.GUI` command in the terminal or command prompt.
- If users installed PyPRS using `pip`, users can directly run `python -m PyPRS.UserInterface.GUI` in the terminal or command prompt.
Once the command is executed, the **Graphical User Interface (GUI)** will launch. In the GUI, users can:
- **select a procedure**
- **configure input parameters**
- **upload required files**
- **run the procedure**
Raw data
{
"_id": null,
"home_page": null,
"name": "PyPRS",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "ranking, selection, simulation, operations research, GSP, KT, PASS, FBKT",
"author": null,
"author_email": "Song Huang <23b910018@stu.hit.edu.cn>, Guangxin Jiang <gxjiang@hit.edu.cn>, Ying Zhong <yzhong4@uestc.edu.cn>",
"download_url": "https://files.pythonhosted.org/packages/4e/9c/09199744dcd564b82a034df5f3f42a1f5487c6654e7407a5fec919d8efcf/pyprs-1.0.0.tar.gz",
"platform": null,
"description": "\r\n\r\n# PyPRS: A Python Software Package for Parallel Ranking and Selection Procedures\r\n\r\n\r\n\r\n**PyPRS** is a Python software package specifically developed to solve large-scale ranking and selection (R&S) problems in parallel computing environments. The underlying parallel computing framework is **Ray**. PyPRS incorporates four well-known parallel procedures: \r\n\r\n- **The Good Selection Procedure (GSP)**\r\n- **The Knockout-Tournament (KT) Procedure**\r\n- **The Parallel Adaptive Survivor Selection (PASS) Procedure**\r\n- **The Fixed-Budget Knockout-Tournament (FBKT) Procedure**\r\n\r\nUsers can also upload custom procedures to test and compare performance against these built-in procedures.\r\n\r\n---\r\n## \ud83d\udccb Prerequisites\r\n- Python **3.10** is recommended for optimal compatibility.\r\n- Required packages: `ray==2.44.1`, `numpy`, `scipy`, `matplotlib`, `mrg32k3a_numba`. Install them using:\r\n```bash\r\npython -m pip install ray==2.44.1 numpy scipy matplotlib mrg32k3a_numba\r\n```\r\n\r\n## \ud83d\udce6 Installation\r\n\r\n```bash\r\npython -m pip install PyPRS\r\n```\r\n\r\n## \ud83d\udda5\ufe0f How to use\r\nTo run PyPRS on a single computer, users just need to execute the **`GUI.py`** file located in the `UserInterface` package in a Python environment\uff1a \r\n- If the PyPRS is downloaded from the source repository, users should first navigate to the parent folder of `PyPRS` folder and then execute the `python -m PyPRS.UserInterface.GUI` command in the terminal or command prompt.\r\n- If users installed PyPRS using `pip`, users can directly run `python -m PyPRS.UserInterface.GUI` in the terminal or command prompt.\r\n\r\nOnce the command is executed, the **Graphical User Interface (GUI)** will launch. In the GUI, users can:\r\n- **select a procedure**\r\n- **configure input parameters**\r\n- **upload required files**\r\n- **run the procedure**\r\n",
"bugtrack_url": null,
"license": null,
"summary": "A Python Software Package for Parallel Ranking and Selection Procedures.",
"version": "1.0.0",
"project_urls": {
"Bug Tracker": "https://github.com/simulation-optimization/PyPRS/issues",
"Homepage": "https://github.com/simulation-optimization/PyPRS"
},
"split_keywords": [
"ranking",
" selection",
" simulation",
" operations research",
" gsp",
" kt",
" pass",
" fbkt"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "50dc47825fbe85717aa3bfa17ee51f68049ee46609f7132119ddef62d1e35a4c",
"md5": "560f81f627749e6058ba37379f82f766",
"sha256": "8e681bc432dc7e06b7866cf54eb2d3e54b9803a1996ecafd7f9611a1c69056fc"
},
"downloads": -1,
"filename": "pyprs-1.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "560f81f627749e6058ba37379f82f766",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 45981,
"upload_time": "2025-07-19T03:06:40",
"upload_time_iso_8601": "2025-07-19T03:06:40.858634Z",
"url": "https://files.pythonhosted.org/packages/50/dc/47825fbe85717aa3bfa17ee51f68049ee46609f7132119ddef62d1e35a4c/pyprs-1.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "4e9c09199744dcd564b82a034df5f3f42a1f5487c6654e7407a5fec919d8efcf",
"md5": "3a96c52b62cb4df349840badeac4039b",
"sha256": "483a6ca9b120bd34e070b1c3dd8f7f0b9569dba1717a4a13a8eba3c30a04a2a9"
},
"downloads": -1,
"filename": "pyprs-1.0.0.tar.gz",
"has_sig": false,
"md5_digest": "3a96c52b62cb4df349840badeac4039b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 40276,
"upload_time": "2025-07-19T03:06:42",
"upload_time_iso_8601": "2025-07-19T03:06:42.667256Z",
"url": "https://files.pythonhosted.org/packages/4e/9c/09199744dcd564b82a034df5f3f42a1f5487c6654e7407a5fec919d8efcf/pyprs-1.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-19 03:06:42",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "simulation-optimization",
"github_project": "PyPRS",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "pyprs"
}