About PyProtolinc
=======================================================================
An Actuarial Projection Tool for Life Insurance Cash Flows.
-------------------------------------------------------------
This package allows to project future cash flows for portfolios of life & health insurance
policies. It comes with a number of built-in standard products but can also be used
to project custom products by the user.
Documentation
^^^^^^^^^^^^^^^^
For extended documentation cf. https://pyprotolinc.readthedocs.io/en/latest/index.html.
Project Objectives
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The key objective for *PyProtolinc* is to model cash flows for a variety of simple life and health insurance
products, going forward also beyond stylized textbook examples.
The tool should provide a command line interface which can be used with configuration files as well as an extensible
programming API which provides flexibility to adapt to own purposes.
Calculations should be laid out to deal with portfolios of insureds in a batch style and an attempt shall be made
that forecast projections for reasonably large portfolios (of, say, a few 10s or 100s of thousands of policies)
can be made in an acceptable amount of time (seconds or up to a few minutes rather than hours).
Basic Usage
----------------
Installation
^^^^^^^^^^^^^^^^
To install from PyPI run::
pip install -U pyprotolinc
Alternatively, or for delevoplement clone (or download) the repository from https://github.com/mseehafer/PyProtolinc.git and
run::
pip install -e .
from the root directory of the repository.
Quickstart
^^^^^^^^^^^^^^^^
Usage is illustrated in detail by the prepared use cases in the *examples* folder. To try those out *cd* into the respective
subfolder and run the tool from the command line::
pyprotolinc run
This will pick up the configuration file (*config.yml*) in the working directory (which points to the portfolio file
in the subdirectory *portfolio*) and initiate a projection run. Once completed the (aggregate) results of the computation
are written into a CSV file in the subfolder *results*. Now one can start playing around by changing the configuration.
Note that the examples are commented in the documentation, cf. https://pyprotolinc.readthedocs.io/en/latest/examples/intro.html .
Raw data
{
"_id": null,
"home_page": "https://github.com/mseehafer/PyProtolinc",
"name": "PyProtolinc",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": "",
"keywords": "actuarial,projection,cash flows,life,insurance",
"author": "Martin Seehafer",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/5b/81/02c6faad2f3b7c46fe867a038d74380e25c4be505534f7c675bbc1f4bec0/PyProtolinc-0.1.7.tar.gz",
"platform": null,
"description": "\r\nAbout PyProtolinc\r\n=======================================================================\r\n\r\nAn Actuarial Projection Tool for Life Insurance Cash Flows.\r\n-------------------------------------------------------------\r\nThis package allows to project future cash flows for portfolios of life & health insurance \r\npolicies. It comes with a number of built-in standard products but can also be used\r\nto project custom products by the user. \r\n\r\n\r\nDocumentation\r\n^^^^^^^^^^^^^^^^\r\n\r\nFor extended documentation cf. https://pyprotolinc.readthedocs.io/en/latest/index.html.\r\n\r\n\r\nProject Objectives\r\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n\r\nThe key objective for *PyProtolinc* is to model cash flows for a variety of simple life and health insurance\r\nproducts, going forward also beyond stylized textbook examples.\r\n\r\nThe tool should provide a command line interface which can be used with configuration files as well as an extensible\r\nprogramming API which provides flexibility to adapt to own purposes.\r\n\r\nCalculations should be laid out to deal with portfolios of insureds in a batch style and an attempt shall be made\r\nthat forecast projections for reasonably large portfolios (of, say, a few 10s or 100s of thousands of policies)\r\ncan be made in an acceptable amount of time (seconds or up to a few minutes rather than hours).\r\n\r\n\r\nBasic Usage\r\n----------------\r\n\r\nInstallation\r\n^^^^^^^^^^^^^^^^\r\n\r\nTo install from PyPI run::\r\n\r\n pip install -U pyprotolinc\r\n\r\nAlternatively, or for delevoplement clone (or download) the repository from https://github.com/mseehafer/PyProtolinc.git and\r\nrun::\r\n\r\n pip install -e .\r\n\r\nfrom the root directory of the repository.\r\n\r\nQuickstart\r\n^^^^^^^^^^^^^^^^\r\n\r\nUsage is illustrated in detail by the prepared use cases in the *examples* folder. To try those out *cd* into the respective\r\nsubfolder and run the tool from the command line::\r\n\r\n pyprotolinc run\r\n\r\nThis will pick up the configuration file (*config.yml*) in the working directory (which points to the portfolio file\r\nin the subdirectory *portfolio*) and initiate a projection run. Once completed the (aggregate) results of the computation\r\nare written into a CSV file in the subfolder *results*. Now one can start playing around by changing the configuration.\r\nNote that the examples are commented in the documentation, cf. https://pyprotolinc.readthedocs.io/en/latest/examples/intro.html .\r\n\r\n\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Projection Tool for Life Insurance Cash Flows",
"version": "0.1.7",
"split_keywords": [
"actuarial",
"projection",
"cash flows",
"life",
"insurance"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "2e822133936e6290acffe0d9f1967ccbe13d1a1ac37e7ec86c68309070b5b19c",
"md5": "fa613e6b9ab54927e37472bcee329394",
"sha256": "10f612c2ab4e07af7f663da541874362c6d3b5ec6a83d4caab5680acdac67f9e"
},
"downloads": -1,
"filename": "PyProtolinc-0.1.7-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "fa613e6b9ab54927e37472bcee329394",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 749475,
"upload_time": "2023-04-01T18:07:59",
"upload_time_iso_8601": "2023-04-01T18:07:59.987930Z",
"url": "https://files.pythonhosted.org/packages/2e/82/2133936e6290acffe0d9f1967ccbe13d1a1ac37e7ec86c68309070b5b19c/PyProtolinc-0.1.7-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f4d5ca82ef76c9b54a6159c01c4467f6b88130d878d65846c54069303be1b9da",
"md5": "52f83aa3f5fe24706e7d393eeb2a8381",
"sha256": "af8619a41f3f3cedec8fb27ff2668bd6641945f56e8305cdfdb7be07dc5ca24b"
},
"downloads": -1,
"filename": "PyProtolinc-0.1.7-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "52f83aa3f5fe24706e7d393eeb2a8381",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 749921,
"upload_time": "2023-04-01T18:08:02",
"upload_time_iso_8601": "2023-04-01T18:08:02.808835Z",
"url": "https://files.pythonhosted.org/packages/f4/d5/ca82ef76c9b54a6159c01c4467f6b88130d878d65846c54069303be1b9da/PyProtolinc-0.1.7-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "73023550f8f93372d93c9a104a4355b3912edf014d6fd0a74041964f14e341de",
"md5": "be2154e7c5409cdffe5c9da9b761d184",
"sha256": "e0071d410ec774301d07c7efec98539b82422c3ac32a969cc29dc729a242a4d6"
},
"downloads": -1,
"filename": "PyProtolinc-0.1.7-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "be2154e7c5409cdffe5c9da9b761d184",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 749948,
"upload_time": "2023-04-01T18:08:05",
"upload_time_iso_8601": "2023-04-01T18:08:05.642714Z",
"url": "https://files.pythonhosted.org/packages/73/02/3550f8f93372d93c9a104a4355b3912edf014d6fd0a74041964f14e341de/PyProtolinc-0.1.7-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "5b8102c6faad2f3b7c46fe867a038d74380e25c4be505534f7c675bbc1f4bec0",
"md5": "3a991257b9b61958441952b21f0154eb",
"sha256": "e87594011b96f25cf84a0e2497f02c94e2dabe2d7db7374e53a483887be2d2c0"
},
"downloads": -1,
"filename": "PyProtolinc-0.1.7.tar.gz",
"has_sig": false,
"md5_digest": "3a991257b9b61958441952b21f0154eb",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 542675,
"upload_time": "2023-04-01T18:08:08",
"upload_time_iso_8601": "2023-04-01T18:08:08.343643Z",
"url": "https://files.pythonhosted.org/packages/5b/81/02c6faad2f3b7c46fe867a038d74380e25c4be505534f7c675bbc1f4bec0/PyProtolinc-0.1.7.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-04-01 18:08:08",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "mseehafer",
"github_project": "PyProtolinc",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "pyprotolinc"
}