PyPyNum


NamePyPyNum JSON
Version 1.17.0 PyPI version JSON
download
home_pagehttps://github.com/PythonSJL/PyPyNum
SummaryPyPyNum is a Python library for math & science computations, covering algebra, calculus, stats, with data structures like matrices, vectors, tensors. It offers numerical tools, programs, and supports computational ops, functions, processing, simulation, & visualization in data science & ML, crucial for research, engineering, & data processing.
upload_time2024-11-22 08:02:05
maintainerNone
docs_urlNone
authorShen Jiayi
requires_python>=3.4
licenseGNU AFFERO GENERAL PUBLIC LICENSE Version 3, 19 November 2007 Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/> Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU Affero General Public License is a free, copyleft license for software and other kinds of works, specifically designed to ensure cooperation with the community in the case of network server software. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, our General Public Licenses are intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. Developers that use our General Public Licenses protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License which gives you legal permission to copy, distribute and/or modify the software. A secondary benefit of defending all users' freedom is that improvements made in alternate versions of the program, if they receive widespread use, become available for other developers to incorporate. Many developers of free software are heartened and encouraged by the resulting cooperation. However, in the case of software used on network servers, this result may fail to come about. The GNU General Public License permits making a modified version and letting the public access it on a server without ever releasing its source code to the public. The GNU Affero General Public License is designed specifically to ensure that, in such cases, the modified source code becomes available to the community. It requires the operator of a network server to provide the source code of the modified version running there to the users of that server. Therefore, public use of a modified version, on a publicly accessible server, gives the public access to the source code of the modified version. An older license, called the Affero General Public License and published by Affero, was designed to accomplish similar goals. This is a different license, not a version of the Affero GPL, but Affero has released a new version of the Affero GPL which permits relicensing under this license. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. "This License" refers to version 3 of the GNU Affero General Public License. "Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. "The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations. To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work. A "covered work" means either the unmodified Program or a work based on the Program. To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a) The work must carry prominent notices stating that you modified it, and giving a relevant date. b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices". c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. "Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. "Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d) Limiting the use for publicity purposes of names of licensors or authors of the material; or e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version". A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Remote Network Interaction; Use with the GNU General Public License. Notwithstanding any other provision of this License, if you modify the Program, your modified version must prominently offer all users interacting with it remotely through a computer network (if your version supports such interaction) an opportunity to receive the Corresponding Source of your version by providing access to the Corresponding Source from a network server at no charge, through some standard or customary means of facilitating copying of software. This Corresponding Source shall include the Corresponding Source for any work covered by version 3 of the GNU General Public License that is incorporated pursuant to the following paragraph. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the work with which it is combined will remain governed by version 3 of the GNU General Public License. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU Affero General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU Affero General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU Affero General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU Affero General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. <one line to give the program's name and a brief idea of what it does.> Copyright (C) <year> <name of author> This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program. If not, see <https://www.gnu.org/licenses/>. Also add information on how to contact you by electronic and paper mail. If your software can interact with users remotely through a computer network, you should also make sure that it provides a way for users to get its source. For example, if your program is a web application, its interface could display a "Source" link that leads users to an archive of the code. There are many ways you could offer source, and different solutions will be better for different programs; see section 13 for the specific requirements. You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow the GNU AGPL, see <https://www.gnu.org/licenses/>.
keywords math 数学 mathematics 数学计算 numerical 数值 computation 计算 scientific 科学 algebra 代数 calculus 微积分 statistics 统计 linear-algebra 线性代数 optimization 优化 numerical-analysis 数值分析 matrix 矩阵 vector 向量 tensor 张量 numerics 数值计算 library tools 工具 utils 实用程序 algorithms 算法 software 软件 package methods 方法 data-science 数据科学 machine-learning 机器学习 computational 计算的 operations 操作 functions 函数 processing 处理 programming 编程 simulation 仿真 visualization 可视化 physics 物理
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # <font color = blue>PyPyNum</font>

<font color = gree>PyPyNum is a Python library for math & science computations, covering algebra, calculus, stats, with
data structures like matrices, vectors, tensors. It offers numerical tools, programs, and supports computational ops,
functions, processing, simulation, & visualization in data science & ML, crucial for research, engineering, & data
processing.</font><font color = red>[Python>=3.4]</font>

```
 ________   ___    ___  ________   ___    ___  ________    ___  ___   _____ ______
|\   __  \ |\  \  /  /||\   __  \ |\  \  /  /||\   ___  \ |\  \|\  \ |\   _ \  _   \
\ \  \|\  \\ \  \/  / /\ \  \|\  \\ \  \/  / /\ \  \\ \  \\ \  \\\  \\ \  \\\__\ \  \
 \ \   ____\\ \    / /  \ \   ____\\ \    / /  \ \  \\ \  \\ \  \\\  \\ \  \\|__| \  \
  \ \  \___| \/  /  /    \ \  \___| \/  /  /    \ \  \\ \  \\ \  \\\  \\ \  \    \ \  \
   \ \__\  __/  / /       \ \__\  __/  / /       \ \__\\ \__\\ \_______\\ \__\    \ \__\
    \|__| |\___/ /         \|__| |\___/ /         \|__| \|__| \|_______| \|__|     \|__|
          \|___|/                \|___|/
```

[![Downloads](https://static.pepy.tech/badge/pypynum)](https://pepy.tech/project/pypynum)
[![Downloads](https://static.pepy.tech/badge/pypynum/month)](https://pepy.tech/project/pypynum)
[![Downloads](https://static.pepy.tech/badge/pypynum/week)](https://pepy.tech/project/pypynum)

## Version -> 1.17.0 | PyPI -> https://pypi.org/project/PyPyNum/ | Gitee -> https://www.gitee.com/PythonSJL/PyPyNum | GitHub -> https://github.com/PythonSJL/PyPyNum

![LOGO](PyPyNum.png)

The logo cannot be displayed on PyPI, it can be viewed in Gitee or GitHub.

### Introduction

+ Multi functional math library, similar to numpy, scipy, etc., designed specifically for PyPy interpreters and also
  supports other types of Python interpreters
+ Update versions periodically to add more practical features
+ If you need to contact, please add QQ number 2261748025 (Py𝙿𝚢𝚝𝚑𝚘𝚗-水晶兰), or through my email 2261748025@qq.com

```
+++++++++++++++++++++++++++++++++++++++++
+ Tip:                                  +
+ Have suggestions or feature requests? +
+ Feel free to share them with us.      +
+ Your feedback is highly appreciated!  +
+++++++++++++++++++++++++++++++++++++++++
```

### Copyright and License

This Python library is licensed under the GNU Affero General Public License version 3 (AGPLv3).

The license is designed to ensure that network server software is made available to the community, allowing users to
access the source code of modified versions when the software is used to provide network services.

**Key Terms and Conditions:**

- Source Code: The library must be provided with its source code, and any modifications must also be distributed under
  the AGPLv3.
- Free Redistribution: The library can be distributed in source and binary forms without any restrictions.
- No Discrimination: The license does not restrict the use of the software by individuals or organizations, nor does it
  discriminate against fields of use.
- No Discrimination Against Persons or Groups: The license does not restrict anyone from receiving the software.
- Patent License: The patent holder must grant a patent license to anyone who uses the software.
- No Surrender of Others' Freedom: The license does not allow any conditions that contradict the AGPLv3.
- Remote Network Interaction: If the software can interact with users remotely, the source code must be made available
  at no charge.
- Revised Versions of this License: The Free Software Foundation may publish revised versions of the AGPLv3, and users
  have the option to follow the terms of any version.
- Disclaimer of Warranty: There is no warranty for the software, to the extent permitted by applicable law.
- Limitation of Liability: The copyright holder and any other party who modifies and conveys the software are not liable
  for damages arising from the use or inability to use the software.

**Full License Text:**

[GNU Affero General Public License](https://www.gnu.org/licenses/agpl-3.0.en.html)

### Name and Function Introduction of Submodules

|   Submodule Name    |                       Function Introduction                        |
|:-------------------:|:------------------------------------------------------------------:|
|  `pypynum.arrays`   | Provides operations and calculations for multi-dimensional arrays. |
|   `pypynum.chars`   |       Contains a variety of special mathematical characters.       |
|  `pypynum.ciphers`  |      Implements various encryption and decryption algorithms.      |
|  `pypynum.consts`   |           Contains mathematical and physical constants.            |
|  `pypynum.crandom`  |                 Generates random complex numbers.                  |
| `pypynum.dataproc`  |          Tools for data preprocessing and transformation.          |
|   `pypynum.dists`   |    Statistical distribution functions and related calculations.    |
| `pypynum.equations` |         Solves equations and performs symbolic operations.         |
|    `pypynum.fft`    |  Implements Fast Fourier Transforms and related functionalities.   |
|   `pypynum.files`   |                  File reading and writing tools.                   |
|   `pypynum.geoms`   |             Geometric shapes and calculation methods.              |
|  `pypynum.graphs`   |           Graph theory algorithms and network analysis.            |
|  `pypynum.groups`   |         Group theory calculations and structural analysis.         |
| `pypynum.hypcmpnms` |        Hypercomplex number operations and transformations.         |
|  `pypynum.images`   |              Image processing and manipulation tools.              |
|  `pypynum.interp`   |         Interpolation methods and function approximation.          |
|  `pypynum.kernels`  |          Implementation of kernel functions and methods.           |
|  `pypynum.logics`   |                    Simulates logical circuits.                     |
|   `pypynum.maths`   |     Basic mathematical operations and commonly used functions.     |
| `pypynum.matrices`  |         Matrix operations and linear algebra calculations.         |
| `pypynum.multiprec` |               High-precision numerical computations.               |
| `pypynum.networks`  |                   Network models and algorithms.                   |
|  `pypynum.numbers`  |           Operations on numerical types and properties.            |
| `pypynum.plotting`  |                     Data visualization tools.                      |
|   `pypynum.polys`   |              Polynomial operations and calculations.               |
| `pypynum.pprinters` |              Advanced printing and formatting output.              |
|  `pypynum.random`   |                Generates arrays of random numbers.                 |
|   `pypynum.regs`    |               Regression analysis and model fitting.               |
|   `pypynum.seqs`    |              Computes various mathematical sequences.              |
|  `pypynum.special`  | Provides advanced special functions for mathematical computations. |
| `pypynum.stattest`  |                Statistical tests and data analysis.                |
|  `pypynum.symbols`  |         Symbolic computation and expression manipulation.          |
|  `pypynum.tensors`  |                Tensor operations and calculations.                 |
|   `pypynum.test`    |                Simple code testing for the library.                |
|   `pypynum.this`    |     The Zen of the library, expressing its guiding principles.     |
|   `pypynum.tools`   |                General tools and helper functions.                 |
|   `pypynum.trees`   |           Tree structures and algorithm implementations.           |
|   `pypynum.types`   |      Contains various types, exceptions, and configurations.       |
|  `pypynum.ufuncs`   |           Universal functions and vectorized operations.           |
|   `pypynum.utils`   |             Utility programs and auxiliary functions.              |
|  `pypynum.vectors`  |                Vector operations and calculations.                 |
|   `pypynum.zh_cn`   | Provides Chinese language interfaces for various functionalities.  |

### The Zen of PyPyNum (Preview)

```
                The Zen of PyPyNum, by Shen Jiayi

In this mathematical sanctuary, we weave our algorithms with pure Python threads.

Precision outweighs approximation.
Elegance in mathematics transcends the bulky algorithms.
Clarity in logic illuminates the darkest problems.
Simplicity in form is the pinnacle of sophistication.
Flat hierarchies in our code mirror the linear nature of functions.
Sparse code, like a minimal polynomial, retains essence without redundancy.
```

```
...

Do you want to view all the content?

Enter "from pypynum import this" in your

Python interpreter and run it!
```

```
                                                                September 5, 2024
```

### Functional Changes Compared to the Previous Version

```
!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=

The current version has correctly implemented the SVD function
for matrix singular value decomposition

The functions "lower_gamma" and "upper_gamma" have been renamed
to "lowergamma" and "uppergamma", respectively

Rename the submodule "quats" to "hypcmpnms" which means
"hypercomplex numbers"

Fixed calculation errors that existed before the quaternion
class

Fixed the issue caused by name change in the "pprint_matrix"
function

(Of course, other features have also undergone minor
modifications, and the effect may differ from previous versions)

!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=

The following are newly added functions or classes:

(These functions have been tested multiple times and no issues
have been found so far. If there are any problems, please
contact me promptly.)

!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=

Octonion(s: typing.Union[int, float], t: typing.Union[int,
float], u: typing.Union[int, float], v: typing.Union[int,
float], w: typing.Union[int, float], x: typing.Union[int,
float], y: typing.Union[int, float], z: typing.Union[int,
float])

This is an octonion class, with many operational functions for
octonions. Octonions are an eight-dimensional extension of
complex numbers, initially introduced by John T. Graves in 1843.
Characterized by their non-associative nature, they consist of
seven imaginary units, denoted as i, j, k, l, m, n, and o. These
entities are applied in physics and computer graphics, albeit
their non-associativity constraint hinders their extensive
computational utilization.

Example:

o = Octonion(1, 2, 3, 4, 5, 6, 7, 8)
o = (1+2i+3j+4k+5l+6m+7n+8o)
o * o = (-202+4i+6j+8k+10l+12m+14n+16o)
round(o.inverse(), 6) = (0.004902-0.009804i-0.014706j-0.019608k-0.02451l-0.029412m-0.034314n-0.039216o)
round(o * o.inverse(), 16) = (1.0+0.0i+0.0j+0.0k+0.0l+0.0m+0.0n-0.0o)
round(o / o, 16) = (1.0+0.0i+0.0j+0.0k+0.0l+0.0m+0.0n-0.0o)

Provides a good function `octo` for creating Octonion classes.

octo(s: real = 0, t: real = 0, u: real = 0, v: real = 0, w: real
= 0, x: real = 0, y: real = 0, z: real = 0) -> Octonion

!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=

diag_indices(n: <class 'int'>, k: <class 'int'>, m: <class
'int'>) -> <class 'tuple'>

This function computes the indices for the k-th diagonal in an n
x m matrix. It returns a tuple of two tuples, each containing a
sequence of integers representing the row and column indices,
respectively, for the k-th diagonal in the matrix. The first
tuple corresponds to the row indices, and the second to the
column indices. The value of k indicates the diagonal: k=0 for
the main diagonal, k>0 for diagonals above the main diagonal,
and k<0 for diagonals below.

diag(v: typing.Any, k: <class 'int'>, n: <class 'int'>, m:
<class 'int'>) -> typing.Any

This function performs dual operations similar to the NumPy
`diag` function: 1. When `v` is a sequence, it constructs a
diagonal matrix by placing the elements of `v` on the k-th
diagonal. 2. When `v` is a matrix, it extracts the elements from
the k-th diagonal and returns them as a 1D sequence. The
argument `k` specifies the diagonal to be operated on, where k=0
refers to the main diagonal, k>0 identifies diagonals above the
main, and k<0 identifies diagonals below the main diagonal.

!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=

damerau(x: typing.Union[list, tuple, str], y: typing.Union[list,
tuple, str]) -> <class 'int'>

Calculate the Damerau-Levenshtein
distance between two sequences. The Damerau-Levenshtein distance
is a measure of the difference between two sequences. It is an
extension of the Levenshtein distance that allows transpositions
(i.e., swapping two adjacent characters) to be considered as a
single edit operation. This function supports any type of
iterable sequences, such as strings, lists, or tuples.
Example:
>>> damerau("ensure", "nester")
3

strip_helper(sequence: typing.Any, keys_set: <class 'set'>,
strip_start: <class 'bool'>, strip_end: <class 'bool'>) ->
typing.Any

Removes elements from the start and/or
end of a sequence that match the specified keys.
Example:
>>> strip_helper([1, 2, 3, 4, 5, 1, 2], {1, 2}, True, True)
[3, 4, 5]

strip(sequence: typing.Any, keys: typing.Any) -> typing.Any

Removes elements from both the start and
end of a sequence that match the specified keys.
Example:
>>> strip([1, 2, 3, 4, 5, 1, 2], [1, 2])
[3, 4, 5]

lstrip(sequence: typing.Any, keys: typing.Any) -> typing.Any

Removes elements from the start of a
sequence that match the specified keys.
Example:
>>> lstrip([1, 2, 3, 4, 5, 1, 2], [1, 2])
[3, 4, 5, 1, 2]

rstrip(sequence: typing.Any, keys: typing.Any) -> typing.Any

Removes elements from the end of a
sequence that match the specified keys.
Example:
>>> rstrip([1, 2, 3, 4, 5, 1, 2], [1, 2])
[1, 2, 3, 4, 5]

!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=
```

### Run Time Test

Python interpreter version

+ CPython 3.8.10

+ PyPy 3.10.12

| Matrix Time Test                               | NumPy+CPython (seconds)                                                                                                                                                            | Ranking | PyPyNum+PyPy (seconds)                                                                                                                                                             | Ranking | Mpmath_+_PyPy_ (seconds)                                                                                                                                                         | Ranking | SymPy_+_PyPy_ (seconds)                                                                                                                                                                                                                    | Ranking |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Create a hundred order random number matrix    | 0.000083                                                                                                                                                                           | 1       | 0.005374                                                                                                                                                                           | 2       | 0.075253                                                                                                                                                                         | 3       | 0.230530                                                                                                                                                                                                                                   | 4       |
| Create a thousand order random number matrix   | 0.006740                                                                                                                                                                           | 1       | 0.035666                                                                                                                                                                           | 2       | 1.200950                                                                                                                                                                         | 3       | 4.370265                                                                                                                                                                                                                                   | 4       |
| Addition of matrices of order one hundred      | 0.000029                                                                                                                                                                           | 1       | 0.002163                                                                                                                                                                           | 2       | 0.045641                                                                                                                                                                         | 4       | 0.035700                                                                                                                                                                                                                                   | 3       |
| Adding matrices of order one thousand          | 0.002647                                                                                                                                                                           | 1       | 0.019111                                                                                                                                                                           | 2       | 1.746957                                                                                                                                                                         | 4       | 0.771542                                                                                                                                                                                                                                   | 3       |
| Determinant of a hundred order matrix          | 0.087209                                                                                                                                                                           | 2       | 0.016331                                                                                                                                                                           | 1       | 4.354507                                                                                                                                                                         | 3       | 5.157206                                                                                                                                                                                                                                   | 4       |
| Determinant of a thousand order matrix         | 0.616113                                                                                                                                                                           | 1       | 3.509747                                                                                                                                                                           | 2       | It takes a long time                                                                                                                                                             | 3       | It takes a long time                                                                                                                                                                                                                       | 4       |
| Finding the inverse of a hundred order matrix  | 0.162770                                                                                                                                                                           | 2       | 0.015768                                                                                                                                                                           | 1       | 8.162948                                                                                                                                                                         | 3       | 21.437424                                                                                                                                                                                                                                  | 4       |
| Finding the inverse of a thousand order matrix | 0.598905                                                                                                                                                                           | 1       | 17.072552                                                                                                                                                                          | 2       | It takes a long time                                                                                                                                                             | 3       | It takes a long time                                                                                                                                                                                                                       | 4       |
| Array output effect                            | ```[[[[ -7 -67]```<br>```[-78  29]]```<br><br>```[[-86 -97]```<br>```[ 68  -3]]]```<br><br><br>```[[[ 11  42]```<br>```[ 24 -65]]```<br><br>```[[-60  72]```<br>```[ 73   2]]]]``` | /       | ```[[[[ 37  83]```<br>```[ 40   2]]```<br><br>```[[ -5 -34]```<br>```[ -7  72]]]```<br><br><br>```[[[ 13 -64]```<br>```[  6  90]]```<br><br>```[[ 68  57]```<br>```[ 78  11]]]]``` | /       | ```[-80.0   -8.0  80.0  -88.0]```<br>```[-99.0  -43.0  87.0   81.0]```<br>```[ 20.0  -55.0  98.0    8.0]```<br>```[  8.0   44.0  64.0  -35.0]```<br><br>(Only supports matrices) | /       | ```⎡⎡16   -56⎤  ⎡ 8   -28⎤⎤```<br>```⎢⎢        ⎥  ⎢        ⎥⎥```<br>```⎢⎣-56  56 ⎦  ⎣-28  28 ⎦⎥```<br>```⎢                      ⎥```<br>```⎢ ⎡-2  7 ⎤   ⎡-18  63 ⎤⎥```<br>```⎢ ⎢      ⎥   ⎢        ⎥⎥```<br>```⎣ ⎣7   -7⎦   ⎣63   -63⎦⎦``` | /       |

### Basic Structure

```
PyPyNum
├── arrays
│   ├── CLASS
│   │   ├── Array(object)/__init__(self: Any, data: Any, check: Any) -> Any
│   │   └── BoolArray(pypynum.arrays.Array)/__init__(self: Any, data: Any, check: Any) -> Any
│   └── FUNCTION
│       ├── array(data: Any) -> Any
│       ├── asarray(data: Any) -> Any
│       ├── aslist(data: Any) -> Any
│       ├── boolarray(data: Any) -> Any
│       ├── fill(shape: typing.Union[list, tuple], sequence: typing.Union[list, tuple], repeat: bool, pad: typing.Any, rtype: typing.Callable) -> typing.Any
│       ├── full(shape: typing.Union[list, tuple], fill_value: typing.Any, rtype: typing.Callable) -> typing.Any
│       ├── full_like(a: typing.Any, fill_value: typing.Any, rtype: typing.Callable) -> typing.Any
│       ├── get_shape(data: Any) -> Any
│       ├── is_valid_array(_array: Any, _shape: Any) -> Any
│       ├── ones(shape: typing.Union[list, tuple], rtype: typing.Callable) -> typing.Any
│       ├── ones_like(a: typing.Any, rtype: typing.Callable) -> typing.Any
│       ├── tensorproduct(tensors: pypynum.arrays.Array) -> pypynum.arrays.Array
│       ├── zeros(shape: typing.Union[list, tuple], rtype: typing.Callable) -> typing.Any
│       └── zeros_like(a: typing.Any, rtype: typing.Callable) -> typing.Any
├── chars
│   ├── CLASS
│   └── FUNCTION
│       ├── int2subscript(standard_str: str) -> str
│       ├── int2superscript(standard_str: str) -> str
│       ├── subscript2int(subscript_str: str) -> str
│       └── superscript2int(superscript_str: str) -> str
├── ciphers
│   ├── CLASS
│   └── FUNCTION
│       ├── atbash(text: str) -> str
│       ├── base_64(text: str, decrypt: bool) -> str
│       ├── caesar(text: str, shift: int, decrypt: bool) -> str
│       ├── hill256(text: bytes, key: list, decrypt: bool) -> bytes
│       ├── ksa(key: bytes) -> list
│       ├── morse(text: str, decrypt: bool) -> str
│       ├── playfair(text: str, key: str, decrypt: bool) -> str
│       ├── prga(s: list) -> Any
│       ├── rc4(text: bytes, key: bytes) -> bytes
│       ├── rot13(text: str) -> str
│       ├── substitution(text: str, sub_map: dict, decrypt: bool) -> str
│       └── vigenere(text: str, key: str, decrypt: bool) -> str
├── consts
│   ├── CLASS
│   └── FUNCTION
├── crandom
│   ├── CLASS
│   └── FUNCTION
│       ├── randint_polar(left: int, right: int, mod: typing.Union[int, float], angle: typing.Union[int, float]) -> complex
│       ├── randint_rect(left: int, right: int, real: typing.Union[int, float], imag: typing.Union[int, float]) -> complex
│       ├── random_polar(mod: typing.Union[int, float], angle: typing.Union[int, float]) -> complex
│       ├── random_rect(real: typing.Union[int, float], imag: typing.Union[int, float]) -> complex
│       ├── uniform_polar(left: typing.Union[int, float], right: typing.Union[int, float], mod: typing.Union[int, float], angle: typing.Union[int, float]) -> complex
│       └── uniform_rect(left: typing.Union[int, float], right: typing.Union[int, float], real: typing.Union[int, float], imag: typing.Union[int, float]) -> complex
├── dataproc
│   ├── CLASS
│   │   └── Series(object)/__init__(self: Any, data: typing.Any, index: typing.Any) -> None
│   └── FUNCTION
├── dists
│   ├── CLASS
│   └── FUNCTION
│       ├── beta_pdf(x: Any, a: Any, b: Any) -> Any
│       ├── binom_pmf(k: Any, n: Any, p: Any) -> Any
│       ├── cauchy_cdf(x: Any, x0: Any, gamma: Any) -> Any
│       ├── cauchy_pdf(x: Any, x0: Any, gamma: Any) -> Any
│       ├── chi2_cdf(x: Any, df: Any) -> Any
│       ├── chi2_pdf(x: Any, df: Any) -> Any
│       ├── expon_cdf(x: Any, scale: Any) -> Any
│       ├── expon_pdf(x: Any, scale: Any) -> Any
│       ├── f_pdf(x: Any, dfnum: Any, dfden: Any) -> Any
│       ├── gamma_pdf(x: Any, shape: Any, scale: Any) -> Any
│       ├── geometric_pmf(k: Any, p: Any) -> Any
│       ├── hypergeom_pmf(k: Any, mg: Any, n: Any, nt: Any) -> Any
│       ├── invgauss_pdf(x: Any, mu: Any, lambda_: Any, alpha: Any) -> Any
│       ├── levy_pdf(x: Any, c: Any) -> Any
│       ├── log_logistic_cdf(x: Any, alpha: Any, beta: Any) -> Any
│       ├── log_logistic_pdf(x: Any, alpha: Any, beta: Any) -> Any
│       ├── logistic_cdf(x: Any, mu: Any, s: Any) -> Any
│       ├── logistic_pdf(x: Any, mu: Any, s: Any) -> Any
│       ├── lognorm_cdf(x: Any, mu: Any, sigma: Any) -> Any
│       ├── lognorm_pdf(x: Any, s: Any, scale: Any) -> Any
│       ├── logser_pmf(k: Any, p: Any) -> Any
│       ├── multinomial_pmf(k: Any, n: Any, p: Any) -> Any
│       ├── nbinom_pmf(k: Any, n: Any, p: Any) -> Any
│       ├── nhypergeom_pmf(k: Any, m: Any, n: Any, r: Any) -> Any
│       ├── normal_cdf(x: Any, mu: Any, sigma: Any) -> Any
│       ├── normal_pdf(x: Any, mu: Any, sigma: Any) -> Any
│       ├── pareto_pdf(x: Any, k: Any, m: Any) -> Any
│       ├── poisson_pmf(k: Any, mu: Any) -> Any
│       ├── rayleigh_pdf(x: Any, sigma: Any) -> Any
│       ├── t_pdf(x: Any, df: Any) -> Any
│       ├── uniform_cdf(x: Any, loc: Any, scale: Any) -> Any
│       ├── uniform_pdf(x: Any, loc: Any, scale: Any) -> Any
│       ├── vonmises_pdf(x: Any, mu: Any, kappa: Any) -> Any
│       ├── weibull_max_pdf(x: Any, c: Any, scale: Any, loc: Any) -> Any
│       ├── weibull_min_pdf(x: Any, c: Any, scale: Any, loc: Any) -> Any
│       └── zipf_pmf(k: Any, s: Any, n: Any) -> Any
├── equations
│   ├── CLASS
│   └── FUNCTION
│       ├── lin_eq(left: list, right: list) -> list
│       └── poly_eq(coefficients: list) -> list
├── fft
│   ├── CLASS
│   │   └── FT1D(object)/__init__(self: Any, data: Any) -> Any
│   └── FUNCTION
├── files
│   ├── CLASS
│   └── FUNCTION
│       ├── read(file: str) -> list
│       └── write(file: str, cls: object) -> Any
├── geoms
│   ├── CLASS
│   │   ├── Circle(object)/__init__(self: Any, center: typing.Union[list, tuple], radius: typing.Union[int, float]) -> Any
│   │   ├── Line(object)/__init__(self: Any, a: typing.Union[list, tuple], b: typing.Union[list, tuple]) -> Any
│   │   ├── Point(object)/__init__(self: Any, p: typing.Union[list, tuple]) -> Any
│   │   ├── Polygon(object)/__init__(self: Any, p: typing.Union[list, tuple]) -> Any
│   │   ├── Quadrilateral(object)/__init__(self: Any, a: typing.Union[list, tuple], b: typing.Union[list, tuple], c: typing.Union[list, tuple], d: typing.Union[list, tuple]) -> Any
│   │   └── Triangle(object)/__init__(self: Any, a: typing.Union[list, tuple], b: typing.Union[list, tuple], c: typing.Union[list, tuple]) -> Any
│   └── FUNCTION
│       └── distance(g1: Any, g2: Any, error: typing.Union[int, float]) -> float
├── graphs
│   ├── CLASS
│   │   ├── BaseGraph(object)/__init__(self: Any) -> Any
│   │   ├── BaseWeGraph(pypynum.graphs.BaseGraph)/__init__(self: Any) -> Any
│   │   ├── DiGraph(pypynum.graphs.BaseGraph)/__init__(self: Any) -> Any
│   │   ├── UnGraph(pypynum.graphs.BaseGraph)/__init__(self: Any) -> Any
│   │   ├── WeDiGraph(pypynum.graphs.BaseWeGraph)/__init__(self: Any) -> Any
│   │   └── WeUnGraph(pypynum.graphs.BaseWeGraph)/__init__(self: Any) -> Any
│   └── FUNCTION
├── groups
│   ├── CLASS
│   │   └── Group(object)/__init__(self: Any, data: Any, operation: Any) -> Any
│   └── FUNCTION
│       └── group(data: Any) -> Any
├── hypcmpnms
│   ├── CLASS
│   │   ├── Euler(object)/__init__(self: Any, y: typing.Union[int, float], p: typing.Union[int, float], r: typing.Union[int, float]) -> Any
│   │   ├── Octonion(object)/__init__(self: Any, s: typing.Union[int, float], t: typing.Union[int, float], u: typing.Union[int, float], v: typing.Union[int, float], w: typing.Union[int, float], x: typing.Union[int, float], y: typing.Union[int, float], z: typing.Union[int, float]) -> Any
│   │   └── Quaternion(object)/__init__(self: Any, w: typing.Union[int, float], x: typing.Union[int, float], y: typing.Union[int, float], z: typing.Union[int, float]) -> Any
│   └── FUNCTION
│       ├── convert(data: typing.Union[pypynum.hypcmpnms.Quaternion, pypynum.matrices.Matrix, pypynum.hypcmpnms.Euler], to: str) -> typing.Union[pypynum.hypcmpnms.Quaternion, pypynum.matrices.Matrix, pypynum.hypcmpnms.Euler]
│       ├── euler(yaw: typing.Union[int, float], pitch: typing.Union[int, float], roll: typing.Union[int, float]) -> pypynum.hypcmpnms.Euler
│       ├── octo(s: typing.Union[int, float], t: typing.Union[int, float], u: typing.Union[int, float], v: typing.Union[int, float], w: typing.Union[int, float], x: typing.Union[int, float], y: typing.Union[int, float], z: typing.Union[int, float]) -> pypynum.hypcmpnms.Octonion
│       └── quat(w: typing.Union[int, float], x: typing.Union[int, float], y: typing.Union[int, float], z: typing.Union[int, float]) -> pypynum.hypcmpnms.Quaternion
├── images
│   ├── CLASS
│   │   └── PNG(object)/__init__(self: Any) -> None
│   └── FUNCTION
│       └── crc(data: Any, length: Any, init: Any, xor: Any) -> Any
├── interp
│   ├── CLASS
│   └── FUNCTION
│       ├── bicubic(x: Any) -> Any
│       ├── contribute(src: Any, x: Any, y: Any, channels: Any) -> Any
│       ├── interp1d(data: typing.Union[list, tuple], length: int) -> list
│       └── interp2d(src: Any, new_height: Any, new_width: Any, channels: Any, round_res: Any, min_val: Any, max_val: Any) -> Any
├── kernels
│   ├── CLASS
│   └── FUNCTION
│       ├── det2x2kernel(a: typing.Union[list, tuple]) -> float
│       ├── det3x3kernel(a: typing.Union[list, tuple]) -> float
│       ├── det4x4kernel(a: typing.Union[list, tuple]) -> float
│       ├── eigen2x2kernel(a: typing.Union[list, tuple]) -> tuple
│       ├── inv2x2kernel(a: typing.Union[list, tuple]) -> list
│       ├── inv3x3kernel(a: typing.Union[list, tuple]) -> list
│       ├── inv4x4kernel(a: typing.Union[list, tuple]) -> list
│       ├── lu2x2kernel(a: typing.Union[list, tuple]) -> tuple
│       ├── lu3x3kernel(a: typing.Union[list, tuple]) -> tuple
│       ├── lu4x4kernel(a: typing.Union[list, tuple]) -> tuple
│       ├── matexp2x2kernel(a: typing.Union[list, tuple]) -> list
│       ├── matmul2x2kernel(a: typing.Union[list, tuple], b: typing.Union[list, tuple]) -> list
│       ├── matmul3x3kernel(a: typing.Union[list, tuple], b: typing.Union[list, tuple]) -> list
│       ├── matmul4x4kernel(a: typing.Union[list, tuple], b: typing.Union[list, tuple]) -> list
│       └── matpow2x2kernel(a: typing.Union[list, tuple], n: typing.Union[int, float, complex]) -> list
├── logics
│   ├── CLASS
│   │   ├── AND(pypynum.logics.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   ├── Basic(object)/__init__(self: Any, label: Any) -> Any
│   │   ├── Binary(pypynum.logics.Basic)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   ├── COMP(pypynum.logics.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   ├── DFF(pypynum.logics.Unary)/__init__(self: Any, label: Any, pin0: Any, state: Any) -> Any
│   │   ├── FullAdder(pypynum.logics.Ternary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, pin2: Any) -> Any
│   │   ├── FullSuber(pypynum.logics.Ternary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, pin2: Any) -> Any
│   │   ├── HalfAdder(pypynum.logics.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   ├── HalfSuber(pypynum.logics.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   ├── JKFF(pypynum.logics.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, state: Any) -> Any
│   │   ├── NAND(pypynum.logics.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   ├── NOR(pypynum.logics.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   ├── NOT(pypynum.logics.Unary)/__init__(self: Any, label: Any, pin0: Any) -> Any
│   │   ├── OR(pypynum.logics.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   ├── Quaternary(pypynum.logics.Basic)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, pin2: Any, pin3: Any) -> Any
│   │   ├── TFF(pypynum.logics.Unary)/__init__(self: Any, label: Any, pin0: Any, state: Any) -> Any
│   │   ├── Ternary(pypynum.logics.Basic)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, pin2: Any) -> Any
│   │   ├── TwoBDiver(pypynum.logics.Quaternary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, pin2: Any, pin3: Any) -> Any
│   │   ├── TwoBMuler(pypynum.logics.Quaternary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, pin2: Any, pin3: Any) -> Any
│   │   ├── Unary(pypynum.logics.Basic)/__init__(self: Any, label: Any, pin0: Any) -> Any
│   │   ├── XNOR(pypynum.logics.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   └── XOR(pypynum.logics.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   └── FUNCTION
│       └── connector(previous: Any, latter: Any) -> Any
├── maths
│   ├── CLASS
│   └── FUNCTION
│       ├── arrangement(n: int, r: int) -> int
│       ├── combination(n: int, r: int) -> int
│       ├── acos(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── acosh(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── acot(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── acoth(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── acsc(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── acsch(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── arrangement(n: int, r: int) -> int
│       ├── asec(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── asech(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── asin(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── asinh(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── atan(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── atanh(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── average(data: typing.Union[list, tuple], weights: typing.Union[list, tuple]) -> float
│       ├── beta(p: typing.Union[int, float], q: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── central_moment(data: typing.Union[list, tuple], order: int) -> float
│       ├── coeff_det(x: typing.Union[list, tuple], y: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── combination(n: int, r: int) -> int
│       ├── corr_coeff(x: typing.Union[list, tuple], y: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── cos(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── cosh(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── cot(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── coth(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── cov(x: typing.Union[list, tuple], y: typing.Union[list, tuple], ddof: int) -> typing.Union[int, float, complex]
│       ├── crt(n: typing.Union[list, tuple], a: typing.Union[list, tuple]) -> int
│       ├── csc(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── csch(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── cumprod(lst: typing.Union[list, tuple]) -> list
│       ├── cumsum(lst: typing.Union[list, tuple]) -> list
│       ├── deriv(f: Any, x: float, h: float, method: str, args: Any, kwargs: Any) -> Any
│       ├── erf(x: typing.Union[int, float]) -> float
│       ├── exgcd(a: int, b: int) -> tuple
│       ├── exp(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── factorial(n: int) -> int
│       ├── freq(data: typing.Union[list, tuple]) -> dict
│       ├── gamma(alpha: typing.Union[int, float]) -> float
│       ├── gcd(args: int) -> int
│       ├── geom_mean(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── harm_mean(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── integ(f: Any, x_start: typing.Union[int, float], x_end: typing.Union[int, float], n: int, args: Any, kwargs: Any) -> float
│       ├── iroot(y: int, n: int) -> int
│       ├── is_possibly_square(n: int) -> bool
│       ├── is_square(n: int) -> bool
│       ├── isqrt(x: int) -> int
│       ├── kurt(data: typing.Union[list, tuple], fisher: bool) -> float
│       ├── lcm(args: int) -> int
│       ├── ln(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── lowergamma(s: typing.Union[int, float, complex], x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── mean(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── median(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── mod_order(a: int, n: int, b: int) -> int
│       ├── mode(data: typing.Union[list, tuple]) -> Any
│       ├── normalize(data: typing.Union[list, tuple], target: typing.Union[int, float, complex]) -> typing.Union[list, tuple]
│       ├── parity(x: int) -> int
│       ├── pi(i: int, n: int, f: Any) -> typing.Union[int, float, complex]
│       ├── power_mean(numbers: typing.Union[list, tuple], p: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── primitive_root(a: int, single: bool) -> typing.Union[int, list]
│       ├── product(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── ptp(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── quantile(data: list, q: float, interpolation: str, ordered: bool) -> float
│       ├── raw_moment(data: typing.Union[list, tuple], order: int) -> float
│       ├── roll(seq: typing.Union[list, tuple, str], shift: int) -> typing.Union[list, tuple, str]
│       ├── root(x: typing.Union[int, float, complex], y: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── sec(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── sech(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── sigma(i: int, n: int, f: Any) -> typing.Union[int, float, complex]
│       ├── sigmoid(x: typing.Union[int, float]) -> float
│       ├── sign(x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── sin(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── sinh(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── skew(data: typing.Union[list, tuple]) -> float
│       ├── square_mean(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── std(numbers: typing.Union[list, tuple], ddof: int) -> typing.Union[int, float, complex]
│       ├── sumprod(arrays: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── tan(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── tanh(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── totient(n: int) -> int
│       ├── uppergamma(s: typing.Union[int, float, complex], x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── var(numbers: typing.Union[list, tuple], ddof: int) -> typing.Union[int, float, complex]
│       ├── xlogy(x: typing.Union[int, float, complex], y: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       └── zeta(alpha: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
├── matrices
│   ├── CLASS
│   │   └── Matrix(pypynum.arrays.Array)/__init__(self: Any, data: Any, check: Any) -> Any
│   └── FUNCTION
│       ├── cholesky(matrix: pypynum.matrices.Matrix, hermitian: bool) -> pypynum.matrices.Matrix
│       ├── diag(v: typing.Any, k: int, n: int, m: int) -> typing.Any
│       ├── diag_indices(n: int, k: int, m: int) -> tuple
│       ├── eigen(matrix: pypynum.matrices.Matrix) -> tuple
│       ├── hessenberg(matrix: pypynum.matrices.Matrix) -> tuple
│       ├── identity(n: int, m: int) -> pypynum.matrices.Matrix
│       ├── lu(matrix: pypynum.matrices.Matrix) -> tuple
│       ├── mat(data: Any) -> Any
│       ├── perm_mat(num_rows: int, num_cols: int, row_swaps: typing.Union[list, tuple], col_swaps: typing.Union[list, tuple], rtype: typing.Callable) -> typing.Any
│       ├── perm_mat_indices(num_rows: int, num_cols: int, row_swaps: typing.Union[list, tuple], col_swaps: typing.Union[list, tuple]) -> tuple
│       ├── qr(matrix: pypynum.matrices.Matrix, reduce: bool) -> tuple
│       ├── rank_decomp(matrix: pypynum.matrices.Matrix) -> tuple
│       ├── rotate90(matrix: pypynum.matrices.Matrix, times: int) -> pypynum.matrices.Matrix
│       ├── svd(matrix: pypynum.matrices.Matrix, full: bool, calc_uv: bool) -> tuple
│       ├── tril_indices(n: int, k: int, m: int) -> tuple
│       └── triu_indices(n: int, k: int, m: int) -> tuple
├── multiprec
│   ├── CLASS
│   │   └── MPComplex(object)/__init__(self: Any, real: Any, imag: Any, sigfigs: Any) -> Any
│   └── FUNCTION
│       ├── _remove_trailing_zeros(value: typing.Any) -> str
│       ├── _setprec(sigfigs: int) -> Any
│       ├── asmpc(real: typing.Union[int, float, str, decimal.Decimal, complex, pypynum.multiprec.MPComplex], imag: typing.Union[int, float, str, decimal.Decimal], sigfigs: int) -> pypynum.multiprec.MPComplex
│       ├── frac2dec(frac: fractions.Fraction, sigfigs: int) -> decimal.Decimal
│       ├── mp_acos(x: typing.Union[int, float, str, decimal.Decimal], sigfigs: int) -> decimal.Decimal
│       ├── mp_asin(x: typing.Union[int, float, str, decimal.Decimal], sigfigs: int) -> decimal.Decimal
│       ├── mp_atan(x: typing.Union[int, float, str, decimal.Decimal], sigfigs: int) -> decimal.Decimal
│       ├── mp_atan2(y: typing.Union[int, float, str, decimal.Decimal], x: typing.Union[int, float, str, decimal.Decimal], sigfigs: int) -> decimal.Decimal
│       ├── mp_catalan(sigfigs: int) -> decimal.Decimal
│       ├── mp_cos(x: typing.Union[int, float, str, decimal.Decimal], sigfigs: int) -> decimal.Decimal
│       ├── mp_cosh(x: typing.Union[int, float, str, decimal.Decimal], sigfigs: int) -> decimal.Decimal
│       ├── mp_e(sigfigs: int, method: str) -> decimal.Decimal
│       ├── mp_euler_gamma(sigfigs: int) -> decimal.Decimal
│       ├── mp_exp(x: typing.Union[int, float, str, decimal.Decimal], sigfigs: int, builtin: bool) -> decimal.Decimal
│       ├── mp_fresnel_c(x: typing.Union[int, float, str, decimal.Decimal], sigfigs: int) -> decimal.Decimal
│       ├── mp_fresnel_s(x: typing.Union[int, float, str, decimal.Decimal], sigfigs: int) -> decimal.Decimal
│       ├── mp_ln(x: typing.Union[int, float, str, decimal.Decimal], sigfigs: int, builtin: bool) -> decimal.Decimal
│       ├── mp_log(x: typing.Union[int, float, str, decimal.Decimal], base: typing.Union[int, float, str, decimal.Decimal], sigfigs: int, builtin: bool) -> decimal.Decimal
│       ├── mp_phi(sigfigs: int, method: str) -> decimal.Decimal
│       ├── mp_pi(sigfigs: int, method: str) -> decimal.Decimal
│       ├── mp_sin(x: typing.Union[int, float, str, decimal.Decimal], sigfigs: int) -> decimal.Decimal
│       └── mp_sinh(x: typing.Union[int, float, str, decimal.Decimal], sigfigs: int) -> decimal.Decimal
├── networks
│   ├── CLASS
│   │   └── NeuralNetwork(object)/__init__(self: Any, _input: Any, _hidden: Any, _output: Any) -> Any
│   └── FUNCTION
│       └── neuraln(_input: Any, _hidden: Any, _output: Any) -> Any
├── numbers
│   ├── CLASS
│   └── FUNCTION
│       ├── float2fraction(number: float, mixed: bool, error: float) -> tuple
│       ├── int2roman(integer: int, overline: bool) -> str
│       ├── int2words(integer: int) -> str
│       ├── parse_float(s: str) -> tuple
│       ├── roman2int(roman_num: str) -> int
│       ├── split_float(s: str) -> tuple
│       └── str2int(string: str) -> int
├── plotting
│   ├── CLASS
│   └── FUNCTION
│       ├── background(right: typing.Union[int, float], left: typing.Union[int, float], top: typing.Union[int, float], bottom: typing.Union[int, float], complexity: typing.Union[int, float], ratio: typing.Union[int, float], string: bool) -> typing.Union[list, str]
│       ├── binary(function: Any, right: typing.Union[int, float], left: typing.Union[int, float], top: typing.Union[int, float], bottom: typing.Union[int, float], complexity: typing.Union[int, float], ratio: typing.Union[int, float], error: Any, compare: Any, string: bool, basic: list, character: str, data: bool, coloration: Any) -> typing.Union[list, str]
│       ├── c_unary(function: Any, projection: str, right: typing.Union[int, float], left: typing.Union[int, float], top: typing.Union[int, float], bottom: typing.Union[int, float], complexity: typing.Union[int, float], ratio: typing.Union[int, float], string: bool, basic: list, character: str, data: bool, coloration: Any) -> typing.Union[list, str]
│       ├── change(data: typing.Union[list, str]) -> typing.Union[list, str]
│       ├── color(text: str, rgb: typing.Union[list, tuple]) -> str
│       └── unary(function: Any, right: typing.Union[int, float], left: typing.Union[int, float], top: typing.Union[int, float], bottom: typing.Union[int, float], complexity: typing.Union[int, float], ratio: typing.Union[int, float], string: bool, basic: list, character: str, data: bool, coloration: Any) -> typing.Union[list, str]
├── polys
│   ├── CLASS
│   │   └── Polynomial(object)/__init__(self: Any, terms: Any) -> Any
│   └── FUNCTION
│       ├── chebgauss(n: Any) -> Any
│       ├── chebpoly(n: Any, single: Any) -> Any
│       ├── from_coeffs(coeffs: Any) -> Any
│       ├── from_coords(coords: Any) -> Any
│       ├── laggauss(n: Any) -> Any
│       ├── lagpoly(n: Any, single: Any) -> Any
│       ├── leggauss(n: Any) -> Any
│       ├── legpoly(n: Any, single: Any) -> Any
│       └── poly(terms: Any) -> Any
├── pprinters
│   ├── CLASS
│   └── FUNCTION
│       └── pprint_matrix(matrix: Any, style: Any, output: Any) -> Any
├── random
│   ├── CLASS
│   └── FUNCTION
│       ├── __create_nested_list(dimensions: Any, func: Any) -> Any
│       ├── __validate_shape(shape: Any) -> Any
│       ├── choice(seq: typing.Union[list, tuple, str], shape: typing.Union[list, tuple]) -> Any
│       ├── gauss(mu: typing.Union[int, float], sigma: typing.Union[int, float], shape: typing.Union[list, tuple]) -> typing.Union[float, list]
│       ├── rand(shape: typing.Union[list, tuple]) -> typing.Union[float, list]
│       ├── randint(a: int, b: int, shape: typing.Union[list, tuple]) -> typing.Union[int, list]
│       └── uniform(a: typing.Union[int, float], b: typing.Union[int, float], shape: typing.Union[list, tuple]) -> typing.Union[float, list]
├── regs
│   ├── CLASS
│   └── FUNCTION
│       ├── lin_reg(x: typing.Union[list, tuple], y: typing.Union[list, tuple]) -> list
│       ├── par_reg(x: typing.Union[list, tuple], y: typing.Union[list, tuple]) -> list
│       └── poly_reg(x: typing.Union[list, tuple], y: typing.Union[list, tuple], n: int) -> list
├── seqs
│   ├── CLASS
│   └── FUNCTION
│       ├── arithmetic_sequence(a1: typing.Union[int, float], an: typing.Union[int, float], d: typing.Union[int, float], n: typing.Union[int, float], s: typing.Union[int, float]) -> dict
│       ├── bell(n: int) -> list
│       ├── bernoulli(n: int, single: bool) -> typing.Union[list, tuple]
│       ├── catalan(n: int, single: bool) -> typing.Union[int, list]
│       ├── farey(n: int) -> list
│       ├── fibonacci(n: int, single: bool) -> typing.Union[int, list]
│       ├── geometric_sequence(a1: typing.Union[int, float], an: typing.Union[int, float], r: typing.Union[int, float], n: typing.Union[int, float], s: typing.Union[int, float]) -> dict
│       ├── lucas(n: int, single: bool) -> typing.Union[int, list]
│       ├── padovan(n: int, single: bool) -> typing.Union[int, list]
│       ├── pascal(n: int) -> list
│       ├── pell(n: int, single: bool) -> typing.Union[int, list]
│       ├── pelllucas(n: int, single: bool) -> typing.Union[int, list]
│       ├── perrin(n: int, single: bool) -> typing.Union[int, list]
│       ├── recaman(n: int, single: bool) -> typing.Union[int, list]
│       ├── stirling1(n: int) -> list
│       ├── stirling2(n: int) -> list
│       ├── sylvester(n: int, single: bool) -> typing.Union[int, list]
│       ├── tetranacci(n: int, single: bool) -> typing.Union[int, list]
│       └── tribonacci(n: int, single: bool) -> typing.Union[int, list]
├── special
│   ├── CLASS
│   └── FUNCTION
│       ├── besseli0(x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── besseli1(x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── besseliv(v: typing.Union[int, float], x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── besselj0(x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── besselj1(x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── besseljv(v: typing.Union[int, float], x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── hyp0f1(b0: typing.Union[int, float, complex], z: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── hyp1f1(a0: typing.Union[int, float, complex], b0: typing.Union[int, float, complex], z: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── hyp2f1(a0: typing.Union[int, float, complex], a1: typing.Union[int, float, complex], b0: typing.Union[int, float, complex], z: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── hyppfq(a: typing.Union[list, tuple], b: typing.Union[list, tuple], z: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── qbeta(a: typing.Union[int, float, complex], b: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── qbinomial(n: typing.Union[int, float, complex], m: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── qcos_large(x: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── qcos_small(x: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── qcosh_large(x: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── qcosh_small(x: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── qexp_large(z: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── qexp_small(z: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── qfactorial(n: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── qgamma(n: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── qpi(q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── qpochhammer(a: typing.Union[int, float, complex], q: typing.Union[int, float, complex], n: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── qsin_large(x: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── qsin_small(x: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── qsinh_large(x: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       └── qsinh_small(x: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
├── stattest
│   ├── CLASS
│   └── FUNCTION
│       ├── chi2_cont(contingency: list, lambda_: float, calc_p: bool, corr: bool) -> tuple
│       ├── chisquare(observed: list, expected: list) -> tuple
│       ├── kurttest(data: list, two_tailed: bool) -> tuple
│       ├── mediantest(samples: Any, ties: Any, lambda_: Any, corr: Any) -> Any
│       ├── normaltest(data: list) -> tuple
│       └── skewtest(data: list, two_tailed: bool) -> tuple
├── symbols
│   ├── CLASS
│   └── FUNCTION
│       └── parse_expr(expr: str) -> list
├── tensors
│   ├── CLASS
│   │   └── Tensor(pypynum.arrays.Array)/__init__(self: Any, data: Any, check: Any) -> Any
│   └── FUNCTION
│       ├── ten(data: list) -> pypynum.tensors.Tensor
│       └── tensor_and_number(tensor: Any, operator: Any, number: Any) -> Any
├── test
│   ├── CLASS
│   └── FUNCTION
├── this
│   ├── CLASS
│   └── FUNCTION
├── tools
│   ├── CLASS
│   └── FUNCTION
│       ├── classify(array: typing.Union[list, tuple]) -> dict
│       ├── cos_sim(seq1: typing.Union[list, tuple, str], seq2: typing.Union[list, tuple, str], is_vector: bool) -> float
│       ├── damerau(x: typing.Union[list, tuple, str], y: typing.Union[list, tuple, str]) -> int
│       ├── dedup(iterable: typing.Union[list, tuple, str]) -> typing.Union[list, tuple, str]
│       ├── fast_pow(a: typing.Any, n: int, init: typing.Any, mul: typing.Callable) -> typing.Any
│       ├── findall(seq: typing.Union[list, tuple, str], pat: typing.Union[list, tuple, str]) -> list
│       ├── frange(start: typing.Union[int, float], stop: typing.Union[int, float], step: float) -> list
│       ├── geomspace(start: typing.Union[int, float], stop: typing.Union[int, float], number: int) -> list
│       ├── kmp_table(pattern: typing.Union[list, tuple, str]) -> list
│       ├── lcsubseq(x: typing.Union[list, tuple, str], y: typing.Union[list, tuple, str]) -> list
│       ├── lcsubstr(x: typing.Union[list, tuple, str], y: typing.Union[list, tuple, str]) -> list
│       ├── levenshtein(x: typing.Union[list, tuple, str], y: typing.Union[list, tuple, str]) -> int
│       ├── linspace(start: typing.Union[int, float], stop: typing.Union[int, float], number: int) -> list
│       ├── lstrip(sequence: typing.Any, keys: typing.Any) -> typing.Any
│       ├── magic_square(n: int) -> list
│       ├── primality(n: int, iter_num: int) -> bool
│       ├── prime_factors(integer: int, dictionary: bool, pollard_rho: bool) -> typing.Union[list, dict]
│       ├── primes(limit: int) -> list
│       ├── replace(seq: typing.Union[list, tuple], old: typing.Union[list, tuple], new: typing.Union[list, tuple], count: int) -> typing.Union[list, tuple]
│       ├── rstrip(sequence: typing.Any, keys: typing.Any) -> typing.Any
│       ├── semiprimes(limit: int) -> list
│       ├── split(iterable: typing.Union[list, tuple, str], key: typing.Union[list, tuple], retain: bool) -> list
│       ├── strip(sequence: typing.Any, keys: typing.Any) -> typing.Any
│       ├── strip_helper(sequence: typing.Any, keys_set: set, strip_start: bool, strip_end: bool) -> typing.Any
│       └── twinprimes(limit: int) -> list
├── trees
│   ├── CLASS
│   │   ├── BTNode(object)/__init__(self: Any, data: Any) -> Any
│   │   ├── BinaryTree(object)/__init__(self: Any, root: Any) -> Any
│   │   ├── MTNode(object)/__init__(self: Any, data: Any) -> Any
│   │   ├── MultiTree(object)/__init__(self: Any, root: Any) -> Any
│   │   ├── RBTNode(object)/__init__(self: Any, data: Any, color: Any) -> Any
│   │   └── RedBlackTree(object)/__init__(self: Any) -> Any
│   └── FUNCTION
├── types
│   ├── CLASS
│   └── FUNCTION
├── ufuncs
│   ├── CLASS
│   └── FUNCTION
│       ├── add(x: Any, y: Any) -> Any
│       ├── apply(a: Any, func: Any, rtype: Any) -> Any
│       ├── base_ufunc(arrays: Any, func: Any, args: Any, rtype: Any) -> Any
│       ├── divide(x: Any, y: Any) -> Any
│       ├── eq(x: Any, y: Any) -> Any
│       ├── floor_divide(x: Any, y: Any) -> Any
│       ├── ge(x: Any, y: Any) -> Any
│       ├── gt(x: Any, y: Any) -> Any
│       ├── le(x: Any, y: Any) -> Any
│       ├── lt(x: Any, y: Any) -> Any
│       ├── modulo(x: Any, y: Any) -> Any
│       ├── multiply(x: Any, y: Any) -> Any
│       ├── ne(x: Any, y: Any) -> Any
│       ├── power(x: Any, y: Any, m: Any) -> Any
│       ├── subtract(x: Any, y: Any) -> Any
│       └── ufunc_helper(x: Any, y: Any, func: Any) -> Any
├── utils
│   ├── CLASS
│   │   ├── InfIterator(object)/__init__(self: Any, start: typing.Union[int, float, complex], mode: str, common: typing.Union[int, float, complex]) -> Any
│   │   ├── IntervalSet(object)/__init__(self: Any, intervals: Any) -> Any
│   │   ├── LinkedList(object)/__init__(self: Any) -> Any
│   │   ├── LinkedListNode(object)/__init__(self: Any, value: Any, next_node: Any) -> Any
│   │   └── OrderedSet(object)/__init__(self: Any, sequence: Any) -> Any
│   └── FUNCTION
├── vectors
│   ├── CLASS
│   │   └── Vector(pypynum.arrays.Array)/__init__(self: Any, data: Any, check: Any) -> Any
│   └── FUNCTION
│       └── vec(data: Any) -> Any
└── zh_cn
    ├── CLASS
    └── FUNCTION
        ├── Fraction转为Decimal(分数对象: fractions.Fraction, 有效位数: int) -> decimal.Decimal
        ├── RC4伪随机生成算法(密钥序列: list) -> Any
        ├── RC4初始化密钥调度算法(密钥: bytes) -> list
        ├── RC4密码(文本: bytes, 密钥: bytes) -> bytes
        ├── ROT13密码(文本: str) -> str
        ├── S型函数(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── base64密码(文本: str, 解密: bool) -> str
        ├── x对数y乘积(x: float, y: float) -> float
        ├── y次方根(被开方数: typing.Union[int, float, complex], 开方数: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
        ├── 一维傅里叶变换(数据: Any) -> pypynum.fft.FT1D
        ├── 上伽玛(s: typing.Union[int, float, complex], x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
        ├── 上标转整数(上标字符串: str) -> str
        ├── 下伽玛(s: typing.Union[int, float, complex], x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
        ├── 下标转整数(下标字符串: str) -> str
        ├── 中位数(数据: typing.List[float]) -> float
        ├── 中国剩余定理(n: typing.List[int], a: typing.List[int]) -> int
        ├── 中心矩(数据: typing.List[float], 阶数: int) -> float
        ├── 乘积和(多个数组: typing.List[typing.Any]) -> float
        ├── 代替密码(文本: str, 替换映射: dict, 解密: bool) -> str
        ├── 众数(数据: typing.List[typing.Any]) -> Any
        ├── 伽玛函数(alpha: float) -> float
        ├── 余切(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 余割(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 余弦(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 偏度(数据: typing.List[float]) -> float
        ├── 全一(形状: Any, 返回类型: Any) -> Any
        ├── 全部填充(形状: Any, 填充值: Any, 返回类型: Any) -> Any
        ├── 全零(形状: Any, 返回类型: Any) -> Any
        ├── 写入(文件: str, 对象: object) -> Any
        ├── 几何平均数(数据: typing.List[float]) -> float
        ├── 凯撒密码(文本: str, 移位: int, 解密: bool) -> str
        ├── 分位数(数据: list, 分位值: float, 插值方法: str, 已排序: bool) -> float
        ├── 判定系数(x: typing.List[float], y: typing.List[float]) -> float
        ├── 判断平方数(n: int) -> bool
        ├── 加权平均(数据: typing.List[float], 权重: typing.List[float]) -> float
        ├── 协方差(x: typing.List[float], y: typing.List[float], 自由度: int) -> float
        ├── 原根(a: int, 单个: bool) -> typing.Union[int, typing.List[int]]
        ├── 原点矩(数据: typing.List[float], 阶数: int) -> float
        ├── 双曲余切(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 双曲余割(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 双曲余弦(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 双曲正切(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 双曲正割(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 双曲正弦(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 反余切(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 反余割(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 反余弦(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 反双曲余切(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 反双曲余割(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 反双曲余弦(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 反双曲正切(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 反双曲正割(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 反双曲正弦(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 反正切(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 反正割(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 反正弦(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 可能是平方数(n: int) -> bool
        ├── 填充序列(形状: Any, 序列: Any, 重复: Any, 填充: Any, 返回类型: Any) -> Any
        ├── 多次方根取整(被开方数: int, 开方数: int) -> int
        ├── 多精度余弦(x: typing.Union[int, float], 有效位数: int) -> decimal.Decimal
        ├── 多精度双曲余弦(x: typing.Union[int, float], 有效位数: int) -> decimal.Decimal
        ├── 多精度双曲正弦(x: typing.Union[int, float], 有效位数: int) -> decimal.Decimal
        ├── 多精度反余弦(x: typing.Union[int, float], 有效位数: int) -> decimal.Decimal
        ├── 多精度反正切(x: typing.Union[int, float], 有效位数: int) -> decimal.Decimal
        ├── 多精度反正弦(x: typing.Union[int, float], 有效位数: int) -> decimal.Decimal
        ├── 多精度圆周率(有效位数: int, 方法: str) -> decimal.Decimal
        ├── 多精度复数(实部: typing.Union[int, float, str, decimal.Decimal], 虚部: typing.Union[int, float, str, decimal.Decimal], 有效位数: int) -> pypynum.multiprec.MPComplex
        ├── 多精度对数(真数: typing.Union[int, float], 底数: typing.Union[int, float], 有效位数: int, 使用内置方法: bool) -> decimal.Decimal
        ├── 多精度方位角(y: typing.Union[int, float], x: typing.Union[int, float], 有效位数: int) -> decimal.Decimal
        ├── 多精度欧拉伽马(有效位数: int) -> decimal.Decimal
        ├── 多精度正弦(x: typing.Union[int, float], 有效位数: int) -> decimal.Decimal
        ├── 多精度自然对数(真数: typing.Union[int, float], 有效位数: int, 使用内置方法: bool) -> decimal.Decimal
        ├── 多精度自然常数(有效位数: int, 方法: str) -> decimal.Decimal
        ├── 多精度自然指数(指数: typing.Union[int, float], 有效位数: int, 使用内置方法: bool) -> decimal.Decimal
        ├── 多精度菲涅耳余弦积分(x: typing.Union[int, float], 有效位数: int) -> decimal.Decimal
        ├── 多精度菲涅耳正弦积分(x: typing.Union[int, float], 有效位数: int) -> decimal.Decimal
        ├── 多精度黄金分割率(有效位数: int, 方法: str) -> decimal.Decimal
        ├── 多项式方程(系数: list) -> list
        ├── 字符串转整数(字符串: str) -> int
        ├── 导数(函数: Any, 参数: float, 步长: float, 额外参数: Any, 额外关键字参数: Any) -> float
        ├── 峰度(数据: typing.List[float], 费希尔: bool) -> float
        ├── 希尔256密码(文本: bytes, 密钥: list, 解密: bool) -> bytes
        ├── 平均数(数据: typing.List[float]) -> float
        ├── 平方平均数(数据: typing.List[float]) -> float
        ├── 平方根取整(被开方数: int) -> int
        ├── 序列滚动(序列: typing.Iterator[typing.Any], 偏移: int) -> typing.Iterator[typing.Any]
        ├── 归一化(数据: typing.List[float], 目标: float) -> typing.List[float]
        ├── 扩展欧几里得算法(a: int, b: int) -> typing.Tuple[int, int, int]
        ├── 拆分浮点数字符串(字符串: str) -> tuple
        ├── 排列数(总数: int, 选取数: int) -> int
        ├── 数组(数据: list, 检查: bool) -> pypynum.arrays.Array
        ├── 整数转上标(标准字符串: str) -> str
        ├── 整数转下标(标准字符串: str) -> str
        ├── 整数转单词(整数: int) -> str
        ├── 整数转罗马数(整数: int, 上划线: bool) -> str
        ├── 方差(数据: typing.List[float], 自由度: int) -> float
        ├── 普莱费尔密码(文本: str, 密钥: str, 解密: bool) -> str
        ├── 最大公约数(args: int) -> int
        ├── 最小公倍数(args: int) -> int
        ├── 极差(数据: typing.List[float]) -> float
        ├── 标准差(数据: typing.List[float], 自由度: int) -> float
        ├── 模运算阶(a: int, n: int, b: int) -> int
        ├── 欧拉函数(n: int) -> int
        ├── 正切(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 正割(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 正弦(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 浮点数转分数(数值: float, 是否带分数: bool, 误差: float) -> tuple
        ├── 相关系数(x: typing.List[float], y: typing.List[float]) -> float
        ├── 积分(函数: Any, 积分开始: float, 积分结束: float, 积分点数: int, 额外参数: Any, 额外关键字参数: Any) -> float
        ├── 积累乘积(数据: typing.List[float]) -> float
        ├── 符号函数(x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
        ├── 类似形状全一(数组A: Any, 返回类型: Any) -> Any
        ├── 类似形状全零(数组A: Any, 返回类型: Any) -> Any
        ├── 类似形状填充(数组A: Any, 填充值: Any, 返回类型: Any) -> Any
        ├── 累乘积(序列: typing.List[float]) -> typing.List[float]
        ├── 累加和(序列: typing.List[float]) -> typing.List[float]
        ├── 线性方程组(左边: list, 右边: list) -> list
        ├── 组合数(总数: int, 选取数: int) -> int
        ├── 维吉尼亚密码(文本: str, 密钥: str, 解密: bool) -> str
        ├── 罗马数转整数(罗马数: str) -> int
        ├── 自然对数(真数: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 自然指数(指数: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 莫尔斯密码(文本: str, 解密: bool) -> str
        ├── 解析浮点数字符串(字符串: str) -> tuple
        ├── 误差函数(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 读取(文件: str) -> list
        ├── 调和平均数(数据: typing.List[float]) -> float
        ├── 贝塔函数(p: float, q: float) -> float
        ├── 贝塞尔函数I0(x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
        ├── 贝塞尔函数I1(x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
        ├── 贝塞尔函数Iv(v: typing.Union[int, float], x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
        ├── 贝塞尔函数J0(x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
        ├── 贝塞尔函数J1(x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
        ├── 贝塞尔函数Jv(v: typing.Union[int, float], x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
        ├── 负一整数次幂(指数: int) -> int
        ├── 转为多精度复数(实部: typing.Union[int, float, str, decimal.Decimal, complex, pypynum.multiprec.MPComplex], 虚部: typing.Union[int, float, str, decimal.Decimal], 有效位数: int) -> pypynum.multiprec.MPComplex
        ├── 转换为列表(数据: Any) -> list
        ├── 转换为数组(数据: Any) -> pypynum.arrays.Array
        ├── 连续乘积(下界: int, 上界: int, 函数: typing.Callable) -> float
        ├── 连续加和(下界: int, 上界: int, 函数: typing.Callable) -> float
        ├── 阶乘函数(n: int) -> int
        ├── 阿特巴什密码(文本: str) -> str
        ├── 频率统计(数据: typing.List[typing.Any]) -> typing.Dict[typing.Any, int]
        └── 黎曼函数(alpha: float) -> float
```

### Code Testing

```python
from pypynum import (arrays, geoms, hypcmpnms, logics, matrices, symbols, tensors, vectors,
                     ciphers, consts, equations, maths, plotting, random, regs, tools)

...

print(arrays.array())
print(arrays.array([1, 2, 3, 4, 5, 6, 7, 8]))
print(arrays.array([[1, 2, 3, 4], [5, 6, 7, 8]]))
print(arrays.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]))

"""
[]
[1 2 3 4 5 6 7 8]
[[1 2 3 4]
 [5 6 7 8]]
[[[1 2]
  [3 4]]

 [[5 6]
  [7 8]]]
"""

triangle = geoms.Triangle((0, 0), (2, 2), (3, 0))
print(triangle.perimeter())
print(triangle.area())
print(triangle.centroid())

"""
8.06449510224598
3.0
(1.6666666666666667, 0.6666666666666666)
"""

q0 = hypcmpnms.quat(1, 2, 3, 4)
q1 = hypcmpnms.quat(5, 6, 7, 8)
print(q0)
print(q1)
print(q0 + q1)
print(q0 * q1)
print(q0.inverse())
print(q1.conjugate())

"""
(1+2i+3j+4k)
(5+6i+7j+8k)
(6+8i+10j+12k)
(-60+12i+30j+24k)
(0.03333333333333333-0.06666666666666667i-0.1j-0.13333333333333333k)
(5-6i-7j-8k)
"""

a, b, c = 1, 1, 1
adder0, adder1 = logics.HalfAdder("alpha", a, b), logics.HalfAdder("beta", c, None)
xor0 = logics.XOR("alpha")
ff0, ff1 = logics.DFF("alpha"), logics.DFF("beta")
xor0.set_order0(1)
xor0.set_order1(1)
logics.connector(adder0, adder1)
logics.connector(adder0, xor0)
logics.connector(adder1, xor0)
logics.connector(adder1, ff0)
logics.connector(xor0, ff1)
print("sum: {}, carry: {}".format(ff0.out(), ff1.out()))

"""
sum: [1], carry: [1]
"""

m0 = matrices.mat([[1, 2], [3, 4]])
m1 = matrices.mat([[5, 6], [7, 8]])
print(m0)
print(m1)
print(m0 + m1)
print(m0 @ m1)
print(m0.inv())
print(m1.rank())

"""
[[1 2]
 [3 4]]
[[5 6]
 [7 8]]
[[ 6  8]
 [10 12]]
[[19 22]
 [43 50]]
[[ -1.9999999999999996   0.9999999999999998]
 [  1.4999999999999998 -0.49999999999999994]]
2
"""

print(symbols.BASIC)
print(symbols.ENGLISH)
print(symbols.GREEK)
print(symbols.parse_expr("-(10+a-(3.14+b0)*(-5))**(-ζn1-2.718/mΣ99)//9"))

"""
%()*+-./0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
C:\Users\Administrator\PycharmProjects\pythonProject\pypynum\tensors.py:16: FutureWarning: The 'Tensor' class is deprecated and will be removed in a future version. Please use the 'Array' class instead for similar functionality.
  warn("The 'Tensor' class is deprecated and will be removed in a future version. "
ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩαβγδεζηθικλμνξοπρστυφχψω
[['10', '+', 'a', '-', ['3.14', '+', 'b0'], '*', '-5'], '**', ['-ζn1', '-', '2.718', '/', 'mΣ99'], '//', '9']
"""

t0 = tensors.ten([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
t1 = tensors.ten([[[9, 10], [11, 12]], [[13, 14], [15, 16]]])
print(t0)
print(t1)
print(t0 + t1)
print(t0 @ t1)

"""
[[[1 2]
  [3 4]]

 [[5 6]
  [7 8]]]
[[[ 9 10]
  [11 12]]

 [[13 14]
  [15 16]]]
[[[10 12]
  [14 16]]

 [[18 20]
  [22 24]]]
[[[ 31  34]
  [ 71  78]]

 [[155 166]
  [211 226]]]
"""

string = "PyPyNum"
encrypted = ciphers.caesar(string, 10)
print(string)
print(encrypted)
print(ciphers.caesar(encrypted, 10, decrypt=True))
encrypted = ciphers.vigenere(string, "ciphers")
print(string)
print(encrypted)
print(ciphers.vigenere(encrypted, "ciphers", decrypt=True))
encrypted = ciphers.morse(string)
print(string)
print(encrypted)
print(ciphers.morse(encrypted, decrypt=True))

"""
PyPyNum
ZiZiXew
PyPyNum
PyPyNum
RgEfRle
PyPyNum
PyPyNum
.--. -.-- .--. -.-- -. ..- --
PYPYNUM
"""

v0 = vectors.vec([1, 2, 3, 4])
v1 = vectors.vec([5, 6, 7, 8])
print(v0)
print(v1)
print(v0 + v1)
print(v0 @ v1)
print(v0.normalize())
print(v1.angles())

"""
[1 2 3 4]
[5 6 7 8]
[ 5 12 21 32]
70
[0.18257418583505536  0.3651483716701107  0.5477225575051661  0.7302967433402214]
[1.1820279130506308, 1.0985826410133916, 1.0114070854293842, 0.9191723423169716]
"""

print(consts.TB)
print(consts.e)
print(consts.h)
print(consts.phi)
print(consts.pi)
print(consts.tera)

"""
1099511627776
2.718281828459045
6.62607015e-34
1.618033988749895
3.141592653589793
1000000000000
"""

p = [1, -2, -3, 4]
m = [
    [
        [1, 2, 3],
        [6, 10, 12],
        [7, 16, 9]
    ],
    [-1, -2, -3]
]
print(equations.poly_eq(p))
print(equations.lin_eq(*m))

"""
[(-1.5615528128088307-6.5209667308287455e-24j), (1.0000000000000007+3.241554513744382e-25j), (2.5615528128088294+4.456233626665941e-24j)]
[1.6666666666666665, -0.6666666666666666, -0.4444444444444444]
"""

print(maths.cot(consts.pi / 3))
print(maths.gamma(1.5))
print(maths.pi(1, 10, lambda x: x ** 2))
print(maths.product([2, 3, 5, 7, 11, 13, 17, 19, 23, 29]))
print(maths.sigma(1, 10, lambda x: x ** 2))
print(maths.var([2, 3, 5, 7, 11, 13, 17, 19, 23, 29]))

"""
0.577350269189626
0.886226925452758
13168189440000
6469693230
385
73.29
"""

plt = plotting.unary(lambda x: x ** 2, top=10, bottom=0, character="+")
print(plt)
print(plotting.binary(lambda x, y: x ** 2 + y ** 2 - 10, right=10, left=0, compare="<=", basic=plotting.change(plt)))
print(plotting.c_unary(lambda x: x ** x, right=2, left=-2, top=2, bottom=-2, complexity=20, character="-"))

"""
  1.00e+01|         +                               +         
          |                                                   
          |          +                             +          
          |                                                   
          |           +                           +           
          |            +                         +            
          |                                                   
          |             +                       +             
  5.00e+00|_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
          |              +                     +              
          |               +                   +               
          |                +                 +                
          |                 +               +                 
          |                  +             +                  
          |                   +           +                   
          |                    +         +                    
          |                     +++   +++                     
  0.00e+00|________________________+++________________________
           -5.00e+00             0.00e+00             5.00e+00
  1.00e+01|         +                               +         
          |                                                   
          |          +                             +          
          |                                                   
          |.........  +                           +           
          |.............                         +            
          |..............                                     
          |................                     +             
  5.00e+00|................_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
          |................                    +              
          |................                   +               
          |..............  +                 +                
          |.............    +               +                 
          |.........         +             +                  
          |                   +           +                   
          |                    +         +                    
          |                     +++   +++                     
  0.00e+00|________________________+++________________________
           -5.00e+00             0.00e+00             5.00e+00
  2.00e+00|           -                 -           -          -          -            -    
          |               -  -            -          -         -         -           -      
          |                     -           -         -        -        -          -        
          |-                       -          -       -       -        -         -          
          |     -   -                - -       --      -      -       -        -            
          |            -  -              -       -      -     -      -       -             -
          |                  -  - -       - --  - ---  -- -  --     -     - -         - -   
          |                         - -   -  --    --    -   -  - --     -       - -        
          |  -   -  - - -  -          - -- -   ---  ---  -   -   ---   --     - -           
          |             -    -  - - - --    ----- -- -- --- --  --  ---    --           -  -
          |               - -      -     ------------ ----  - --  -- - ---       - - -      
          |    -  -  -  - -  ----- - -- ----------------------- -- ----  - -- --            
          |   -  -   - -         - ---- ---------------------------------      - - - - -  - 
  0.00e+00|_ _ _ _ _ _ _ _-_-_-_-_---- ------------------------------------_-- _ _ _ _ _ _ _
          |            -  -   - - ----------------------------------------- -- - - - -      
          |   -  --  -  -       -- -  -  --------------------------------- -           -  - 
          |    -          - ---- - - -- --------------------- ----- ----    - -- -          
          |               -         - -- --------- -- -- -  -----  ---  -- -       - -  -   
          |             -  - -  - - - -    ---- --- --- --- --  --  ---     - -            -
          |  -   -  - -               - --     --   --   -   -    --   --       --          
          |                       - -     -  --    -    --   -- -  -     --        -  -     
          |                  -  -         - -   - - -  -- -   -     --      -           -   
          |            -  -            - -      --     --     -      -       - -           -
          |     -   -                -         -       -      -       -          -          
          |-                    -  -          -       -        -       -           -        
          |                  -              -         -        -        -            -      
          |               -               -          -         -         -                  
 -2.00e+00|___________-_________________-___________-_____________________-____________-____
           -2.00e+00                            0.00e+00                            2.00e+00
"""

print(random.gauss(0, 1, [2, 3, 4]))
print(random.rand([2, 3, 4]))
print(random.randint(0, 9, [2, 3, 4]))
print(random.uniform(0, 9, [2, 3, 4]))

"""
[[[0.4847228830212484, 0.21191111573518406, 0.5373857787327614, -0.8093138913140422], [-0.7011162169944548, -0.9912705888373583, 0.7186439322555127, -0.2274581920158257], [1.3914572485772865, 0.7075164958432888, 0.7592813432866642, 0.035360908326509295]], [[-0.015103635361811502, 0.2260790803894067, -0.0479692229109478, -0.18601862902940933], [1.2607730202510887, -1.3885699518983425, 0.6662735518373, 0.31158223208478136], [-0.6163262301739749, 0.45335816472937096, -0.3099931166324452, 0.33766139602898054]]]
[[[0.9908387599158799, 0.21201658430651493, 0.9437298457409969, 0.05879243950811597], [0.5031188669965702, 0.4848728511699505, 0.01579620200535503, 0.45437774795329555], [0.25978581761821773, 0.8368846886830117, 0.305587930563909, 0.25483467458201103]], [[0.9555384002609535, 0.4956682731616203, 0.2577575820069856, 0.42012684095465547], [0.7236210201681477, 0.20749387839946765, 0.41822591597474046, 0.3049876771209371], [0.5482188347875343, 0.9725069497850535, 0.0009136275067901378, 0.6566715689489501]]]
[[[0, 8, 3, 1], [0, 8, 6, 8], [6, 0, 4, 6]], [[3, 0, 3, 5], [7, 1, 4, 4], [6, 5, 6, 7]]]
[[[0.5283612378290214, 7.262524059790431, 7.772626276903747, 5.054257930459873], [4.346895596478688, 4.245631516109806, 1.4873778244242264, 0.21200334989526515], [5.560169637820303, 7.944316673669743, 1.142117411431089, 4.0928173218897665]], [[1.5511337413790796, 3.9871009562400013, 6.859553134546862, 6.823314677935608], [6.528323813176091, 2.1511397393620104, 2.207094001588672, 7.546888086887966], [8.716377217873646, 5.754127816115938, 8.725415670845436, 8.033482314572911]]]
"""

print(regs.lin_reg(list(range(5)), [2, 4, 6, 7, 8]))
print(regs.par_reg(list(range(5)), [2, 4, 6, 7, 8]))
print(regs.poly_reg(list(range(5)), [2, 4, 6, 7, 8], 4))

"""
[1.5, 2.4000000000000004]
[-0.21428571428571563, 2.3571428571428625, 1.971428571428569]
[0.08333333333320592, -0.666666666666571, 1.4166666666628345, 1.1666666666688208, 1.9999999999999258]
"""

print(tools.classify([1, 2.3, 4 + 5j, "string", list, True, 3.14, False, tuple, tools]))
print(tools.dedup(["Python", 6, "NumPy", int, "PyPyNum", 9, "pypynum", "NumPy", 6, True]))
print(tools.frange(0, 3, 0.4))
print(tools.linspace(0, 2.8, 8))

"""
{<class 'int'>: [1], <class 'float'>: [2.3, 3.14], <class 'complex'>: [(4+5j)], <class 'str'>: ['string'], <class 'type'>: [<class 'list'>, <class 'tuple'>], <class 'bool'>: [True, False], <class 'module'>: [<module 'pypynum.tools' from 'C:\\Users\\Administrator\\PycharmProjects\\pythonProject\\pypynum\\tools.py'>]}
['Python', 6, 'NumPy', <class 'int'>, 'PyPyNum', 9, 'pypynum', True]
[0.0, 0.4, 0.8, 1.2000000000000002, 1.6, 2.0, 2.4000000000000004, 2.8000000000000003, 3.2]
[0.0, 0.39999999999999997, 0.7999999999999999, 1.2, 1.5999999999999999, 1.9999999999999998, 2.4, 2.8]
"""

# Tip:
# The test has been successfully passed and ended.
# These tests are only part of the functionality of this package.
# More features need to be explored and tried by yourself!
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/PythonSJL/PyPyNum",
    "name": "PyPyNum",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.4",
    "maintainer_email": null,
    "keywords": "math, \u6570\u5b66, mathematics, \u6570\u5b66\u8ba1\u7b97, numerical, \u6570\u503c, computation, \u8ba1\u7b97, scientific, \u79d1\u5b66, algebra, \u4ee3\u6570, calculus, \u5fae\u79ef\u5206, statistics, \u7edf\u8ba1, linear-algebra, \u7ebf\u6027\u4ee3\u6570, optimization, \u4f18\u5316, numerical-analysis, \u6570\u503c\u5206\u6790, matrix, \u77e9\u9635, vector, \u5411\u91cf, tensor, \u5f20\u91cf, numerics, \u6570\u503c\u8ba1\u7b97, library, \u5e93, tools, \u5de5\u5177, utils, \u5b9e\u7528\u7a0b\u5e8f, algorithms, \u7b97\u6cd5, software, \u8f6f\u4ef6, package, \u5305, methods, \u65b9\u6cd5, data-science, \u6570\u636e\u79d1\u5b66, machine-learning, \u673a\u5668\u5b66\u4e60, computational, \u8ba1\u7b97\u7684, operations, \u64cd\u4f5c, functions, \u51fd\u6570, processing, \u5904\u7406, programming, \u7f16\u7a0b, simulation, \u4eff\u771f, visualization, \u53ef\u89c6\u5316, physics, \u7269\u7406",
    "author": "Shen Jiayi",
    "author_email": "2261748025@qq.com",
    "download_url": "https://files.pythonhosted.org/packages/8f/52/08daad4ac14b9e093f0f86c44a4c9223ff834fb22e4b3f644a84a8a07fda/pypynum-1.17.0.tar.gz",
    "platform": null,
    "description": "\ufeff# <font color = blue>PyPyNum</font>\r\n\r\n<font color = gree>PyPyNum is a Python library for math & science computations, covering algebra, calculus, stats, with\r\ndata structures like matrices, vectors, tensors. It offers numerical tools, programs, and supports computational ops,\r\nfunctions, processing, simulation, & visualization in data science & ML, crucial for research, engineering, & data\r\nprocessing.</font><font color = red>[Python>=3.4]</font>\r\n\r\n```\r\n ________   ___    ___  ________   ___    ___  ________    ___  ___   _____ ______\r\n|\\   __  \\ |\\  \\  /  /||\\   __  \\ |\\  \\  /  /||\\   ___  \\ |\\  \\|\\  \\ |\\   _ \\  _   \\\r\n\\ \\  \\|\\  \\\\ \\  \\/  / /\\ \\  \\|\\  \\\\ \\  \\/  / /\\ \\  \\\\ \\  \\\\ \\  \\\\\\  \\\\ \\  \\\\\\__\\ \\  \\\r\n \\ \\   ____\\\\ \\    / /  \\ \\   ____\\\\ \\    / /  \\ \\  \\\\ \\  \\\\ \\  \\\\\\  \\\\ \\  \\\\|__| \\  \\\r\n  \\ \\  \\___| \\/  /  /    \\ \\  \\___| \\/  /  /    \\ \\  \\\\ \\  \\\\ \\  \\\\\\  \\\\ \\  \\    \\ \\  \\\r\n   \\ \\__\\  __/  / /       \\ \\__\\  __/  / /       \\ \\__\\\\ \\__\\\\ \\_______\\\\ \\__\\    \\ \\__\\\r\n    \\|__| |\\___/ /         \\|__| |\\___/ /         \\|__| \\|__| \\|_______| \\|__|     \\|__|\r\n          \\|___|/                \\|___|/\r\n```\r\n\r\n[![Downloads](https://static.pepy.tech/badge/pypynum)](https://pepy.tech/project/pypynum)\r\n[![Downloads](https://static.pepy.tech/badge/pypynum/month)](https://pepy.tech/project/pypynum)\r\n[![Downloads](https://static.pepy.tech/badge/pypynum/week)](https://pepy.tech/project/pypynum)\r\n\r\n## Version -> 1.17.0 | PyPI -> https://pypi.org/project/PyPyNum/ | Gitee -> https://www.gitee.com/PythonSJL/PyPyNum | GitHub -> https://github.com/PythonSJL/PyPyNum\r\n\r\n![LOGO](PyPyNum.png)\r\n\r\nThe logo cannot be displayed on PyPI, it can be viewed in Gitee or GitHub.\r\n\r\n### Introduction\r\n\r\n+ Multi functional math library, similar to numpy, scipy, etc., designed specifically for PyPy interpreters and also\r\n  supports other types of Python interpreters\r\n+ Update versions periodically to add more practical features\r\n+ If you need to contact, please add QQ number 2261748025 (Py\ud835\ude7f\ud835\udea2\ud835\ude9d\ud835\ude91\ud835\ude98\ud835\ude97-\u6c34\u6676\u5170), or through my email 2261748025@qq.com\r\n\r\n```\r\n+++++++++++++++++++++++++++++++++++++++++\r\n+ Tip:                                  +\r\n+ Have suggestions or feature requests? +\r\n+ Feel free to share them with us.      +\r\n+ Your feedback is highly appreciated!  +\r\n+++++++++++++++++++++++++++++++++++++++++\r\n```\r\n\r\n### Copyright and License\r\n\r\nThis Python library is licensed under the GNU Affero General Public License version 3 (AGPLv3).\r\n\r\nThe license is designed to ensure that network server software is made available to the community, allowing users to\r\naccess the source code of modified versions when the software is used to provide network services.\r\n\r\n**Key Terms and Conditions:**\r\n\r\n- Source Code: The library must be provided with its source code, and any modifications must also be distributed under\r\n  the AGPLv3.\r\n- Free Redistribution: The library can be distributed in source and binary forms without any restrictions.\r\n- No Discrimination: The license does not restrict the use of the software by individuals or organizations, nor does it\r\n  discriminate against fields of use.\r\n- No Discrimination Against Persons or Groups: The license does not restrict anyone from receiving the software.\r\n- Patent License: The patent holder must grant a patent license to anyone who uses the software.\r\n- No Surrender of Others' Freedom: The license does not allow any conditions that contradict the AGPLv3.\r\n- Remote Network Interaction: If the software can interact with users remotely, the source code must be made available\r\n  at no charge.\r\n- Revised Versions of this License: The Free Software Foundation may publish revised versions of the AGPLv3, and users\r\n  have the option to follow the terms of any version.\r\n- Disclaimer of Warranty: There is no warranty for the software, to the extent permitted by applicable law.\r\n- Limitation of Liability: The copyright holder and any other party who modifies and conveys the software are not liable\r\n  for damages arising from the use or inability to use the software.\r\n\r\n**Full License Text:**\r\n\r\n[GNU Affero General Public License](https://www.gnu.org/licenses/agpl-3.0.en.html)\r\n\r\n### Name and Function Introduction of Submodules\r\n\r\n|   Submodule Name    |                       Function Introduction                        |\r\n|:-------------------:|:------------------------------------------------------------------:|\r\n|  `pypynum.arrays`   | Provides operations and calculations for multi-dimensional arrays. |\r\n|   `pypynum.chars`   |       Contains a variety of special mathematical characters.       |\r\n|  `pypynum.ciphers`  |      Implements various encryption and decryption algorithms.      |\r\n|  `pypynum.consts`   |           Contains mathematical and physical constants.            |\r\n|  `pypynum.crandom`  |                 Generates random complex numbers.                  |\r\n| `pypynum.dataproc`  |          Tools for data preprocessing and transformation.          |\r\n|   `pypynum.dists`   |    Statistical distribution functions and related calculations.    |\r\n| `pypynum.equations` |         Solves equations and performs symbolic operations.         |\r\n|    `pypynum.fft`    |  Implements Fast Fourier Transforms and related functionalities.   |\r\n|   `pypynum.files`   |                  File reading and writing tools.                   |\r\n|   `pypynum.geoms`   |             Geometric shapes and calculation methods.              |\r\n|  `pypynum.graphs`   |           Graph theory algorithms and network analysis.            |\r\n|  `pypynum.groups`   |         Group theory calculations and structural analysis.         |\r\n| `pypynum.hypcmpnms` |        Hypercomplex number operations and transformations.         |\r\n|  `pypynum.images`   |              Image processing and manipulation tools.              |\r\n|  `pypynum.interp`   |         Interpolation methods and function approximation.          |\r\n|  `pypynum.kernels`  |          Implementation of kernel functions and methods.           |\r\n|  `pypynum.logics`   |                    Simulates logical circuits.                     |\r\n|   `pypynum.maths`   |     Basic mathematical operations and commonly used functions.     |\r\n| `pypynum.matrices`  |         Matrix operations and linear algebra calculations.         |\r\n| `pypynum.multiprec` |               High-precision numerical computations.               |\r\n| `pypynum.networks`  |                   Network models and algorithms.                   |\r\n|  `pypynum.numbers`  |           Operations on numerical types and properties.            |\r\n| `pypynum.plotting`  |                     Data visualization tools.                      |\r\n|   `pypynum.polys`   |              Polynomial operations and calculations.               |\r\n| `pypynum.pprinters` |              Advanced printing and formatting output.              |\r\n|  `pypynum.random`   |                Generates arrays of random numbers.                 |\r\n|   `pypynum.regs`    |               Regression analysis and model fitting.               |\r\n|   `pypynum.seqs`    |              Computes various mathematical sequences.              |\r\n|  `pypynum.special`  | Provides advanced special functions for mathematical computations. |\r\n| `pypynum.stattest`  |                Statistical tests and data analysis.                |\r\n|  `pypynum.symbols`  |         Symbolic computation and expression manipulation.          |\r\n|  `pypynum.tensors`  |                Tensor operations and calculations.                 |\r\n|   `pypynum.test`    |                Simple code testing for the library.                |\r\n|   `pypynum.this`    |     The Zen of the library, expressing its guiding principles.     |\r\n|   `pypynum.tools`   |                General tools and helper functions.                 |\r\n|   `pypynum.trees`   |           Tree structures and algorithm implementations.           |\r\n|   `pypynum.types`   |      Contains various types, exceptions, and configurations.       |\r\n|  `pypynum.ufuncs`   |           Universal functions and vectorized operations.           |\r\n|   `pypynum.utils`   |             Utility programs and auxiliary functions.              |\r\n|  `pypynum.vectors`  |                Vector operations and calculations.                 |\r\n|   `pypynum.zh_cn`   | Provides Chinese language interfaces for various functionalities.  |\r\n\r\n### The Zen of PyPyNum (Preview)\r\n\r\n```\r\n                The Zen of PyPyNum, by Shen Jiayi\r\n\r\nIn this mathematical sanctuary, we weave our algorithms with pure Python threads.\r\n\r\nPrecision outweighs approximation.\r\nElegance in mathematics transcends the bulky algorithms.\r\nClarity in logic illuminates the darkest problems.\r\nSimplicity in form is the pinnacle of sophistication.\r\nFlat hierarchies in our code mirror the linear nature of functions.\r\nSparse code, like a minimal polynomial, retains essence without redundancy.\r\n```\r\n\r\n```\r\n...\r\n\r\nDo you want to view all the content?\r\n\r\nEnter \"from pypynum import this\" in your\r\n\r\nPython interpreter and run it!\r\n```\r\n\r\n```\r\n                                                                September 5, 2024\r\n```\r\n\r\n### Functional Changes Compared to the Previous Version\r\n\r\n```\r\n!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=\r\n\r\nThe current version has correctly implemented the SVD function\r\nfor matrix singular value decomposition\r\n\r\nThe functions \"lower_gamma\" and \"upper_gamma\" have been renamed\r\nto \"lowergamma\" and \"uppergamma\", respectively\r\n\r\nRename the submodule \"quats\" to \"hypcmpnms\" which means\r\n\"hypercomplex numbers\"\r\n\r\nFixed calculation errors that existed before the quaternion\r\nclass\r\n\r\nFixed the issue caused by name change in the \"pprint_matrix\"\r\nfunction\r\n\r\n(Of course, other features have also undergone minor\r\nmodifications, and the effect may differ from previous versions)\r\n\r\n!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=\r\n\r\nThe following are newly added functions or classes:\r\n\r\n(These functions have been tested multiple times and no issues\r\nhave been found so far. If there are any problems, please\r\ncontact me promptly.)\r\n\r\n!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=\r\n\r\nOctonion(s: typing.Union[int, float], t: typing.Union[int,\r\nfloat], u: typing.Union[int, float], v: typing.Union[int,\r\nfloat], w: typing.Union[int, float], x: typing.Union[int,\r\nfloat], y: typing.Union[int, float], z: typing.Union[int,\r\nfloat])\r\n\r\nThis is an octonion class, with many operational functions for\r\noctonions. Octonions are an eight-dimensional extension of\r\ncomplex numbers, initially introduced by John T. Graves in 1843.\r\nCharacterized by their non-associative nature, they consist of\r\nseven imaginary units, denoted as i, j, k, l, m, n, and o. These\r\nentities are applied in physics and computer graphics, albeit\r\ntheir non-associativity constraint hinders their extensive\r\ncomputational utilization.\r\n\r\nExample:\r\n\r\no = Octonion(1, 2, 3, 4, 5, 6, 7, 8)\r\no = (1+2i+3j+4k+5l+6m+7n+8o)\r\no * o = (-202+4i+6j+8k+10l+12m+14n+16o)\r\nround(o.inverse(), 6) = (0.004902-0.009804i-0.014706j-0.019608k-0.02451l-0.029412m-0.034314n-0.039216o)\r\nround(o * o.inverse(), 16) = (1.0+0.0i+0.0j+0.0k+0.0l+0.0m+0.0n-0.0o)\r\nround(o / o, 16) = (1.0+0.0i+0.0j+0.0k+0.0l+0.0m+0.0n-0.0o)\r\n\r\nProvides a good function `octo` for creating Octonion classes.\r\n\r\nocto(s: real = 0, t: real = 0, u: real = 0, v: real = 0, w: real\r\n= 0, x: real = 0, y: real = 0, z: real = 0) -> Octonion\r\n\r\n!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=\r\n\r\ndiag_indices(n: <class 'int'>, k: <class 'int'>, m: <class\r\n'int'>) -> <class 'tuple'>\r\n\r\nThis function computes the indices for the k-th diagonal in an n\r\nx m matrix. It returns a tuple of two tuples, each containing a\r\nsequence of integers representing the row and column indices,\r\nrespectively, for the k-th diagonal in the matrix. The first\r\ntuple corresponds to the row indices, and the second to the\r\ncolumn indices. The value of k indicates the diagonal: k=0 for\r\nthe main diagonal, k>0 for diagonals above the main diagonal,\r\nand k<0 for diagonals below.\r\n\r\ndiag(v: typing.Any, k: <class 'int'>, n: <class 'int'>, m:\r\n<class 'int'>) -> typing.Any\r\n\r\nThis function performs dual operations similar to the NumPy\r\n`diag` function: 1. When `v` is a sequence, it constructs a\r\ndiagonal matrix by placing the elements of `v` on the k-th\r\ndiagonal. 2. When `v` is a matrix, it extracts the elements from\r\nthe k-th diagonal and returns them as a 1D sequence. The\r\nargument `k` specifies the diagonal to be operated on, where k=0\r\nrefers to the main diagonal, k>0 identifies diagonals above the\r\nmain, and k<0 identifies diagonals below the main diagonal.\r\n\r\n!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=\r\n\r\ndamerau(x: typing.Union[list, tuple, str], y: typing.Union[list,\r\ntuple, str]) -> <class 'int'>\r\n\r\nCalculate the Damerau-Levenshtein\r\ndistance between two sequences. The Damerau-Levenshtein distance\r\nis a measure of the difference between two sequences. It is an\r\nextension of the Levenshtein distance that allows transpositions\r\n(i.e., swapping two adjacent characters) to be considered as a\r\nsingle edit operation. This function supports any type of\r\niterable sequences, such as strings, lists, or tuples.\r\nExample:\r\n>>> damerau(\"ensure\", \"nester\")\r\n3\r\n\r\nstrip_helper(sequence: typing.Any, keys_set: <class 'set'>,\r\nstrip_start: <class 'bool'>, strip_end: <class 'bool'>) ->\r\ntyping.Any\r\n\r\nRemoves elements from the start and/or\r\nend of a sequence that match the specified keys.\r\nExample:\r\n>>> strip_helper([1, 2, 3, 4, 5, 1, 2], {1, 2}, True, True)\r\n[3, 4, 5]\r\n\r\nstrip(sequence: typing.Any, keys: typing.Any) -> typing.Any\r\n\r\nRemoves elements from both the start and\r\nend of a sequence that match the specified keys.\r\nExample:\r\n>>> strip([1, 2, 3, 4, 5, 1, 2], [1, 2])\r\n[3, 4, 5]\r\n\r\nlstrip(sequence: typing.Any, keys: typing.Any) -> typing.Any\r\n\r\nRemoves elements from the start of a\r\nsequence that match the specified keys.\r\nExample:\r\n>>> lstrip([1, 2, 3, 4, 5, 1, 2], [1, 2])\r\n[3, 4, 5, 1, 2]\r\n\r\nrstrip(sequence: typing.Any, keys: typing.Any) -> typing.Any\r\n\r\nRemoves elements from the end of a\r\nsequence that match the specified keys.\r\nExample:\r\n>>> rstrip([1, 2, 3, 4, 5, 1, 2], [1, 2])\r\n[1, 2, 3, 4, 5]\r\n\r\n!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=\r\n```\r\n\r\n### Run Time Test\r\n\r\nPython interpreter version\r\n\r\n+ CPython 3.8.10\r\n\r\n+ PyPy 3.10.12\r\n\r\n| Matrix Time Test                               | NumPy+CPython (seconds)                                                                                                                                                            | Ranking | PyPyNum+PyPy (seconds)                                                                                                                                                             | Ranking | Mpmath_+_PyPy_ (seconds)                                                                                                                                                         | Ranking | SymPy_+_PyPy_ (seconds)                                                                                                                                                                                                                    | Ranking |\r\n|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|\r\n| Create a hundred order random number matrix    | 0.000083                                                                                                                                                                           | 1       | 0.005374                                                                                                                                                                           | 2       | 0.075253                                                                                                                                                                         | 3       | 0.230530                                                                                                                                                                                                                                   | 4       |\r\n| Create a thousand order random number matrix   | 0.006740                                                                                                                                                                           | 1       | 0.035666                                                                                                                                                                           | 2       | 1.200950                                                                                                                                                                         | 3       | 4.370265                                                                                                                                                                                                                                   | 4       |\r\n| Addition of matrices of order one hundred      | 0.000029                                                                                                                                                                           | 1       | 0.002163                                                                                                                                                                           | 2       | 0.045641                                                                                                                                                                         | 4       | 0.035700                                                                                                                                                                                                                                   | 3       |\r\n| Adding matrices of order one thousand          | 0.002647                                                                                                                                                                           | 1       | 0.019111                                                                                                                                                                           | 2       | 1.746957                                                                                                                                                                         | 4       | 0.771542                                                                                                                                                                                                                                   | 3       |\r\n| Determinant of a hundred order matrix          | 0.087209                                                                                                                                                                           | 2       | 0.016331                                                                                                                                                                           | 1       | 4.354507                                                                                                                                                                         | 3       | 5.157206                                                                                                                                                                                                                                   | 4       |\r\n| Determinant of a thousand order matrix         | 0.616113                                                                                                                                                                           | 1       | 3.509747                                                                                                                                                                           | 2       | It takes a long time                                                                                                                                                             | 3       | It takes a long time                                                                                                                                                                                                                       | 4       |\r\n| Finding the inverse of a hundred order matrix  | 0.162770                                                                                                                                                                           | 2       | 0.015768                                                                                                                                                                           | 1       | 8.162948                                                                                                                                                                         | 3       | 21.437424                                                                                                                                                                                                                                  | 4       |\r\n| Finding the inverse of a thousand order matrix | 0.598905                                                                                                                                                                           | 1       | 17.072552                                                                                                                                                                          | 2       | It takes a long time                                                                                                                                                             | 3       | It takes a long time                                                                                                                                                                                                                       | 4       |\r\n| Array output effect                            | ```[[[[\u2002-7\u2002-67]```<br>```[-78\u2002\u200229]]```<br><br>```[[-86\u2002-97]```<br>```[\u200268\u2002\u2002-3]]]```<br><br><br>```[[[\u200211\u2002\u200242]```<br>```[\u200224\u2002-65]]```<br><br>```[[-60\u2002\u200272]```<br>```[\u200273\u2002\u2002\u20022]]]]``` | /       | ```[[[[\u200237\u2002\u200283]```<br>```[\u200240\u2002\u2002\u20022]]```<br><br>```[[\u2002-5\u2002-34]```<br>```[\u2002-7\u2002\u200272]]]```<br><br><br>```[[[\u200213\u2002-64]```<br>```[\u2002\u20026\u2002\u200290]]```<br><br>```[[\u200268\u2002\u200257]```<br>```[\u200278\u2002\u200211]]]]``` | /       | ```[-80.0\u2002\u2002\u2002-8.0\u2002\u200280.0\u2002\u2002-88.0]```<br>```[-99.0\u2002\u2002-43.0\u2002\u200287.0\u2002\u2002\u200281.0]```<br>```[\u200220.0\u2002\u2002-55.0\u2002\u200298.0\u2002\u2002\u2002\u20028.0]```<br>```[\u2002\u20028.0\u2002\u2002\u200244.0\u2002\u200264.0\u2002\u2002-35.0]```<br><br>(Only supports matrices) | /       | ```\u23a1\u23a116\u2002\u2002\u2002-56\u23a4\u2002\u2002\u23a1\u20028\u2002\u2002\u2002-28\u23a4\u23a4```<br>```\u23a2\u23a2\u2002\u2002\u2002\u2002\u2002\u2002\u2002\u2002\u23a5\u2002\u2002\u23a2\u2002\u2002\u2002\u2002\u2002\u2002\u2002\u2002\u23a5\u23a5```<br>```\u23a2\u23a3-56\u2002\u200256\u2002\u23a6\u2002\u2002\u23a3-28\u2002\u200228\u2002\u23a6\u23a5```<br>```\u23a2\u2002\u2002\u2002\u2002\u2002\u2002\u2002\u2002\u2002\u2002\u2002\u2002\u2002\u2002\u2002\u2002\u2002\u2002\u2002\u2002\u2002\u2002\u23a5```<br>```\u23a2\u2002\u23a1-2\u2002\u20027\u2002\u23a4\u2002\u2002\u2002\u23a1-18\u2002\u200263\u2002\u23a4\u23a5```<br>```\u23a2\u2002\u23a2\u2002\u2002\u2002\u2002\u2002\u2002\u23a5\u2002\u2002\u2002\u23a2\u2002\u2002\u2002\u2002\u2002\u2002\u2002\u2002\u23a5\u23a5```<br>```\u23a3\u2002\u23a37\u2002\u2002\u2002-7\u23a6\u2002\u2002\u2002\u23a363\u2002\u2002\u2002-63\u23a6\u23a6``` | /       |\r\n\r\n### Basic Structure\r\n\r\n```\r\nPyPyNum\r\n\u251c\u2500\u2500 arrays\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2502   \u251c\u2500\u2500 Array(object)/__init__(self: Any, data: Any, check: Any) -> Any\r\n\u2502   \u2502   \u2514\u2500\u2500 BoolArray(pypynum.arrays.Array)/__init__(self: Any, data: Any, check: Any) -> Any\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u251c\u2500\u2500 array(data: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 asarray(data: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 aslist(data: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 boolarray(data: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 fill(shape: typing.Union[list, tuple], sequence: typing.Union[list, tuple], repeat: bool, pad: typing.Any, rtype: typing.Callable) -> typing.Any\r\n\u2502       \u251c\u2500\u2500 full(shape: typing.Union[list, tuple], fill_value: typing.Any, rtype: typing.Callable) -> typing.Any\r\n\u2502       \u251c\u2500\u2500 full_like(a: typing.Any, fill_value: typing.Any, rtype: typing.Callable) -> typing.Any\r\n\u2502       \u251c\u2500\u2500 get_shape(data: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 is_valid_array(_array: Any, _shape: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 ones(shape: typing.Union[list, tuple], rtype: typing.Callable) -> typing.Any\r\n\u2502       \u251c\u2500\u2500 ones_like(a: typing.Any, rtype: typing.Callable) -> typing.Any\r\n\u2502       \u251c\u2500\u2500 tensorproduct(tensors: pypynum.arrays.Array) -> pypynum.arrays.Array\r\n\u2502       \u251c\u2500\u2500 zeros(shape: typing.Union[list, tuple], rtype: typing.Callable) -> typing.Any\r\n\u2502       \u2514\u2500\u2500 zeros_like(a: typing.Any, rtype: typing.Callable) -> typing.Any\r\n\u251c\u2500\u2500 chars\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u251c\u2500\u2500 int2subscript(standard_str: str) -> str\r\n\u2502       \u251c\u2500\u2500 int2superscript(standard_str: str) -> str\r\n\u2502       \u251c\u2500\u2500 subscript2int(subscript_str: str) -> str\r\n\u2502       \u2514\u2500\u2500 superscript2int(superscript_str: str) -> str\r\n\u251c\u2500\u2500 ciphers\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u251c\u2500\u2500 atbash(text: str) -> str\r\n\u2502       \u251c\u2500\u2500 base_64(text: str, decrypt: bool) -> str\r\n\u2502       \u251c\u2500\u2500 caesar(text: str, shift: int, decrypt: bool) -> str\r\n\u2502       \u251c\u2500\u2500 hill256(text: bytes, key: list, decrypt: bool) -> bytes\r\n\u2502       \u251c\u2500\u2500 ksa(key: bytes) -> list\r\n\u2502       \u251c\u2500\u2500 morse(text: str, decrypt: bool) -> str\r\n\u2502       \u251c\u2500\u2500 playfair(text: str, key: str, decrypt: bool) -> str\r\n\u2502       \u251c\u2500\u2500 prga(s: list) -> Any\r\n\u2502       \u251c\u2500\u2500 rc4(text: bytes, key: bytes) -> bytes\r\n\u2502       \u251c\u2500\u2500 rot13(text: str) -> str\r\n\u2502       \u251c\u2500\u2500 substitution(text: str, sub_map: dict, decrypt: bool) -> str\r\n\u2502       \u2514\u2500\u2500 vigenere(text: str, key: str, decrypt: bool) -> str\r\n\u251c\u2500\u2500 consts\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u251c\u2500\u2500 crandom\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u251c\u2500\u2500 randint_polar(left: int, right: int, mod: typing.Union[int, float], angle: typing.Union[int, float]) -> complex\r\n\u2502       \u251c\u2500\u2500 randint_rect(left: int, right: int, real: typing.Union[int, float], imag: typing.Union[int, float]) -> complex\r\n\u2502       \u251c\u2500\u2500 random_polar(mod: typing.Union[int, float], angle: typing.Union[int, float]) -> complex\r\n\u2502       \u251c\u2500\u2500 random_rect(real: typing.Union[int, float], imag: typing.Union[int, float]) -> complex\r\n\u2502       \u251c\u2500\u2500 uniform_polar(left: typing.Union[int, float], right: typing.Union[int, float], mod: typing.Union[int, float], angle: typing.Union[int, float]) -> complex\r\n\u2502       \u2514\u2500\u2500 uniform_rect(left: typing.Union[int, float], right: typing.Union[int, float], real: typing.Union[int, float], imag: typing.Union[int, float]) -> complex\r\n\u251c\u2500\u2500 dataproc\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2502   \u2514\u2500\u2500 Series(object)/__init__(self: Any, data: typing.Any, index: typing.Any) -> None\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u251c\u2500\u2500 dists\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u251c\u2500\u2500 beta_pdf(x: Any, a: Any, b: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 binom_pmf(k: Any, n: Any, p: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 cauchy_cdf(x: Any, x0: Any, gamma: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 cauchy_pdf(x: Any, x0: Any, gamma: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 chi2_cdf(x: Any, df: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 chi2_pdf(x: Any, df: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 expon_cdf(x: Any, scale: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 expon_pdf(x: Any, scale: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 f_pdf(x: Any, dfnum: Any, dfden: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 gamma_pdf(x: Any, shape: Any, scale: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 geometric_pmf(k: Any, p: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 hypergeom_pmf(k: Any, mg: Any, n: Any, nt: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 invgauss_pdf(x: Any, mu: Any, lambda_: Any, alpha: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 levy_pdf(x: Any, c: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 log_logistic_cdf(x: Any, alpha: Any, beta: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 log_logistic_pdf(x: Any, alpha: Any, beta: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 logistic_cdf(x: Any, mu: Any, s: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 logistic_pdf(x: Any, mu: Any, s: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 lognorm_cdf(x: Any, mu: Any, sigma: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 lognorm_pdf(x: Any, s: Any, scale: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 logser_pmf(k: Any, p: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 multinomial_pmf(k: Any, n: Any, p: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 nbinom_pmf(k: Any, n: Any, p: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 nhypergeom_pmf(k: Any, m: Any, n: Any, r: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 normal_cdf(x: Any, mu: Any, sigma: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 normal_pdf(x: Any, mu: Any, sigma: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 pareto_pdf(x: Any, k: Any, m: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 poisson_pmf(k: Any, mu: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 rayleigh_pdf(x: Any, sigma: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 t_pdf(x: Any, df: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 uniform_cdf(x: Any, loc: Any, scale: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 uniform_pdf(x: Any, loc: Any, scale: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 vonmises_pdf(x: Any, mu: Any, kappa: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 weibull_max_pdf(x: Any, c: Any, scale: Any, loc: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 weibull_min_pdf(x: Any, c: Any, scale: Any, loc: Any) -> Any\r\n\u2502       \u2514\u2500\u2500 zipf_pmf(k: Any, s: Any, n: Any) -> Any\r\n\u251c\u2500\u2500 equations\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u251c\u2500\u2500 lin_eq(left: list, right: list) -> list\r\n\u2502       \u2514\u2500\u2500 poly_eq(coefficients: list) -> list\r\n\u251c\u2500\u2500 fft\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2502   \u2514\u2500\u2500 FT1D(object)/__init__(self: Any, data: Any) -> Any\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u251c\u2500\u2500 files\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u251c\u2500\u2500 read(file: str) -> list\r\n\u2502       \u2514\u2500\u2500 write(file: str, cls: object) -> Any\r\n\u251c\u2500\u2500 geoms\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2502   \u251c\u2500\u2500 Circle(object)/__init__(self: Any, center: typing.Union[list, tuple], radius: typing.Union[int, float]) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 Line(object)/__init__(self: Any, a: typing.Union[list, tuple], b: typing.Union[list, tuple]) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 Point(object)/__init__(self: Any, p: typing.Union[list, tuple]) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 Polygon(object)/__init__(self: Any, p: typing.Union[list, tuple]) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 Quadrilateral(object)/__init__(self: Any, a: typing.Union[list, tuple], b: typing.Union[list, tuple], c: typing.Union[list, tuple], d: typing.Union[list, tuple]) -> Any\r\n\u2502   \u2502   \u2514\u2500\u2500 Triangle(object)/__init__(self: Any, a: typing.Union[list, tuple], b: typing.Union[list, tuple], c: typing.Union[list, tuple]) -> Any\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u2514\u2500\u2500 distance(g1: Any, g2: Any, error: typing.Union[int, float]) -> float\r\n\u251c\u2500\u2500 graphs\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2502   \u251c\u2500\u2500 BaseGraph(object)/__init__(self: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 BaseWeGraph(pypynum.graphs.BaseGraph)/__init__(self: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 DiGraph(pypynum.graphs.BaseGraph)/__init__(self: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 UnGraph(pypynum.graphs.BaseGraph)/__init__(self: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 WeDiGraph(pypynum.graphs.BaseWeGraph)/__init__(self: Any) -> Any\r\n\u2502   \u2502   \u2514\u2500\u2500 WeUnGraph(pypynum.graphs.BaseWeGraph)/__init__(self: Any) -> Any\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u251c\u2500\u2500 groups\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2502   \u2514\u2500\u2500 Group(object)/__init__(self: Any, data: Any, operation: Any) -> Any\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u2514\u2500\u2500 group(data: Any) -> Any\r\n\u251c\u2500\u2500 hypcmpnms\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2502   \u251c\u2500\u2500 Euler(object)/__init__(self: Any, y: typing.Union[int, float], p: typing.Union[int, float], r: typing.Union[int, float]) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 Octonion(object)/__init__(self: Any, s: typing.Union[int, float], t: typing.Union[int, float], u: typing.Union[int, float], v: typing.Union[int, float], w: typing.Union[int, float], x: typing.Union[int, float], y: typing.Union[int, float], z: typing.Union[int, float]) -> Any\r\n\u2502   \u2502   \u2514\u2500\u2500 Quaternion(object)/__init__(self: Any, w: typing.Union[int, float], x: typing.Union[int, float], y: typing.Union[int, float], z: typing.Union[int, float]) -> Any\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u251c\u2500\u2500 convert(data: typing.Union[pypynum.hypcmpnms.Quaternion, pypynum.matrices.Matrix, pypynum.hypcmpnms.Euler], to: str) -> typing.Union[pypynum.hypcmpnms.Quaternion, pypynum.matrices.Matrix, pypynum.hypcmpnms.Euler]\r\n\u2502       \u251c\u2500\u2500 euler(yaw: typing.Union[int, float], pitch: typing.Union[int, float], roll: typing.Union[int, float]) -> pypynum.hypcmpnms.Euler\r\n\u2502       \u251c\u2500\u2500 octo(s: typing.Union[int, float], t: typing.Union[int, float], u: typing.Union[int, float], v: typing.Union[int, float], w: typing.Union[int, float], x: typing.Union[int, float], y: typing.Union[int, float], z: typing.Union[int, float]) -> pypynum.hypcmpnms.Octonion\r\n\u2502       \u2514\u2500\u2500 quat(w: typing.Union[int, float], x: typing.Union[int, float], y: typing.Union[int, float], z: typing.Union[int, float]) -> pypynum.hypcmpnms.Quaternion\r\n\u251c\u2500\u2500 images\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2502   \u2514\u2500\u2500 PNG(object)/__init__(self: Any) -> None\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u2514\u2500\u2500 crc(data: Any, length: Any, init: Any, xor: Any) -> Any\r\n\u251c\u2500\u2500 interp\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u251c\u2500\u2500 bicubic(x: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 contribute(src: Any, x: Any, y: Any, channels: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 interp1d(data: typing.Union[list, tuple], length: int) -> list\r\n\u2502       \u2514\u2500\u2500 interp2d(src: Any, new_height: Any, new_width: Any, channels: Any, round_res: Any, min_val: Any, max_val: Any) -> Any\r\n\u251c\u2500\u2500 kernels\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u251c\u2500\u2500 det2x2kernel(a: typing.Union[list, tuple]) -> float\r\n\u2502       \u251c\u2500\u2500 det3x3kernel(a: typing.Union[list, tuple]) -> float\r\n\u2502       \u251c\u2500\u2500 det4x4kernel(a: typing.Union[list, tuple]) -> float\r\n\u2502       \u251c\u2500\u2500 eigen2x2kernel(a: typing.Union[list, tuple]) -> tuple\r\n\u2502       \u251c\u2500\u2500 inv2x2kernel(a: typing.Union[list, tuple]) -> list\r\n\u2502       \u251c\u2500\u2500 inv3x3kernel(a: typing.Union[list, tuple]) -> list\r\n\u2502       \u251c\u2500\u2500 inv4x4kernel(a: typing.Union[list, tuple]) -> list\r\n\u2502       \u251c\u2500\u2500 lu2x2kernel(a: typing.Union[list, tuple]) -> tuple\r\n\u2502       \u251c\u2500\u2500 lu3x3kernel(a: typing.Union[list, tuple]) -> tuple\r\n\u2502       \u251c\u2500\u2500 lu4x4kernel(a: typing.Union[list, tuple]) -> tuple\r\n\u2502       \u251c\u2500\u2500 matexp2x2kernel(a: typing.Union[list, tuple]) -> list\r\n\u2502       \u251c\u2500\u2500 matmul2x2kernel(a: typing.Union[list, tuple], b: typing.Union[list, tuple]) -> list\r\n\u2502       \u251c\u2500\u2500 matmul3x3kernel(a: typing.Union[list, tuple], b: typing.Union[list, tuple]) -> list\r\n\u2502       \u251c\u2500\u2500 matmul4x4kernel(a: typing.Union[list, tuple], b: typing.Union[list, tuple]) -> list\r\n\u2502       \u2514\u2500\u2500 matpow2x2kernel(a: typing.Union[list, tuple], n: typing.Union[int, float, complex]) -> list\r\n\u251c\u2500\u2500 logics\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2502   \u251c\u2500\u2500 AND(pypynum.logics.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 Basic(object)/__init__(self: Any, label: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 Binary(pypynum.logics.Basic)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 COMP(pypynum.logics.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 DFF(pypynum.logics.Unary)/__init__(self: Any, label: Any, pin0: Any, state: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 FullAdder(pypynum.logics.Ternary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, pin2: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 FullSuber(pypynum.logics.Ternary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, pin2: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 HalfAdder(pypynum.logics.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 HalfSuber(pypynum.logics.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 JKFF(pypynum.logics.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, state: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 NAND(pypynum.logics.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 NOR(pypynum.logics.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 NOT(pypynum.logics.Unary)/__init__(self: Any, label: Any, pin0: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 OR(pypynum.logics.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 Quaternary(pypynum.logics.Basic)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, pin2: Any, pin3: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 TFF(pypynum.logics.Unary)/__init__(self: Any, label: Any, pin0: Any, state: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 Ternary(pypynum.logics.Basic)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, pin2: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 TwoBDiver(pypynum.logics.Quaternary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, pin2: Any, pin3: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 TwoBMuler(pypynum.logics.Quaternary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, pin2: Any, pin3: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 Unary(pypynum.logics.Basic)/__init__(self: Any, label: Any, pin0: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 XNOR(pypynum.logics.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any\r\n\u2502   \u2502   \u2514\u2500\u2500 XOR(pypynum.logics.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u2514\u2500\u2500 connector(previous: Any, latter: Any) -> Any\r\n\u251c\u2500\u2500 maths\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u251c\u2500\u2500 arrangement(n: int, r: int) -> int\r\n\u2502       \u251c\u2500\u2500 combination(n: int, r: int) -> int\r\n\u2502       \u251c\u2500\u2500 acos(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 acosh(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 acot(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 acoth(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 acsc(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 acsch(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 arrangement(n: int, r: int) -> int\r\n\u2502       \u251c\u2500\u2500 asec(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 asech(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 asin(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 asinh(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 atan(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 atanh(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 average(data: typing.Union[list, tuple], weights: typing.Union[list, tuple]) -> float\r\n\u2502       \u251c\u2500\u2500 beta(p: typing.Union[int, float], q: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 central_moment(data: typing.Union[list, tuple], order: int) -> float\r\n\u2502       \u251c\u2500\u2500 coeff_det(x: typing.Union[list, tuple], y: typing.Union[list, tuple]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 combination(n: int, r: int) -> int\r\n\u2502       \u251c\u2500\u2500 corr_coeff(x: typing.Union[list, tuple], y: typing.Union[list, tuple]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 cos(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 cosh(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 cot(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 coth(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 cov(x: typing.Union[list, tuple], y: typing.Union[list, tuple], ddof: int) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 crt(n: typing.Union[list, tuple], a: typing.Union[list, tuple]) -> int\r\n\u2502       \u251c\u2500\u2500 csc(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 csch(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 cumprod(lst: typing.Union[list, tuple]) -> list\r\n\u2502       \u251c\u2500\u2500 cumsum(lst: typing.Union[list, tuple]) -> list\r\n\u2502       \u251c\u2500\u2500 deriv(f: Any, x: float, h: float, method: str, args: Any, kwargs: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 erf(x: typing.Union[int, float]) -> float\r\n\u2502       \u251c\u2500\u2500 exgcd(a: int, b: int) -> tuple\r\n\u2502       \u251c\u2500\u2500 exp(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 factorial(n: int) -> int\r\n\u2502       \u251c\u2500\u2500 freq(data: typing.Union[list, tuple]) -> dict\r\n\u2502       \u251c\u2500\u2500 gamma(alpha: typing.Union[int, float]) -> float\r\n\u2502       \u251c\u2500\u2500 gcd(args: int) -> int\r\n\u2502       \u251c\u2500\u2500 geom_mean(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 harm_mean(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 integ(f: Any, x_start: typing.Union[int, float], x_end: typing.Union[int, float], n: int, args: Any, kwargs: Any) -> float\r\n\u2502       \u251c\u2500\u2500 iroot(y: int, n: int) -> int\r\n\u2502       \u251c\u2500\u2500 is_possibly_square(n: int) -> bool\r\n\u2502       \u251c\u2500\u2500 is_square(n: int) -> bool\r\n\u2502       \u251c\u2500\u2500 isqrt(x: int) -> int\r\n\u2502       \u251c\u2500\u2500 kurt(data: typing.Union[list, tuple], fisher: bool) -> float\r\n\u2502       \u251c\u2500\u2500 lcm(args: int) -> int\r\n\u2502       \u251c\u2500\u2500 ln(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 lowergamma(s: typing.Union[int, float, complex], x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 mean(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 median(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 mod_order(a: int, n: int, b: int) -> int\r\n\u2502       \u251c\u2500\u2500 mode(data: typing.Union[list, tuple]) -> Any\r\n\u2502       \u251c\u2500\u2500 normalize(data: typing.Union[list, tuple], target: typing.Union[int, float, complex]) -> typing.Union[list, tuple]\r\n\u2502       \u251c\u2500\u2500 parity(x: int) -> int\r\n\u2502       \u251c\u2500\u2500 pi(i: int, n: int, f: Any) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 power_mean(numbers: typing.Union[list, tuple], p: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 primitive_root(a: int, single: bool) -> typing.Union[int, list]\r\n\u2502       \u251c\u2500\u2500 product(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 ptp(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 quantile(data: list, q: float, interpolation: str, ordered: bool) -> float\r\n\u2502       \u251c\u2500\u2500 raw_moment(data: typing.Union[list, tuple], order: int) -> float\r\n\u2502       \u251c\u2500\u2500 roll(seq: typing.Union[list, tuple, str], shift: int) -> typing.Union[list, tuple, str]\r\n\u2502       \u251c\u2500\u2500 root(x: typing.Union[int, float, complex], y: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 sec(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 sech(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 sigma(i: int, n: int, f: Any) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 sigmoid(x: typing.Union[int, float]) -> float\r\n\u2502       \u251c\u2500\u2500 sign(x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 sin(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 sinh(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 skew(data: typing.Union[list, tuple]) -> float\r\n\u2502       \u251c\u2500\u2500 square_mean(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 std(numbers: typing.Union[list, tuple], ddof: int) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 sumprod(arrays: typing.Union[list, tuple]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 tan(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 tanh(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n\u2502       \u251c\u2500\u2500 totient(n: int) -> int\r\n\u2502       \u251c\u2500\u2500 uppergamma(s: typing.Union[int, float, complex], x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 var(numbers: typing.Union[list, tuple], ddof: int) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 xlogy(x: typing.Union[int, float, complex], y: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u2514\u2500\u2500 zeta(alpha: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u251c\u2500\u2500 matrices\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2502   \u2514\u2500\u2500 Matrix(pypynum.arrays.Array)/__init__(self: Any, data: Any, check: Any) -> Any\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u251c\u2500\u2500 cholesky(matrix: pypynum.matrices.Matrix, hermitian: bool) -> pypynum.matrices.Matrix\r\n\u2502       \u251c\u2500\u2500 diag(v: typing.Any, k: int, n: int, m: int) -> typing.Any\r\n\u2502       \u251c\u2500\u2500 diag_indices(n: int, k: int, m: int) -> tuple\r\n\u2502       \u251c\u2500\u2500 eigen(matrix: pypynum.matrices.Matrix) -> tuple\r\n\u2502       \u251c\u2500\u2500 hessenberg(matrix: pypynum.matrices.Matrix) -> tuple\r\n\u2502       \u251c\u2500\u2500 identity(n: int, m: int) -> pypynum.matrices.Matrix\r\n\u2502       \u251c\u2500\u2500 lu(matrix: pypynum.matrices.Matrix) -> tuple\r\n\u2502       \u251c\u2500\u2500 mat(data: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 perm_mat(num_rows: int, num_cols: int, row_swaps: typing.Union[list, tuple], col_swaps: typing.Union[list, tuple], rtype: typing.Callable) -> typing.Any\r\n\u2502       \u251c\u2500\u2500 perm_mat_indices(num_rows: int, num_cols: int, row_swaps: typing.Union[list, tuple], col_swaps: typing.Union[list, tuple]) -> tuple\r\n\u2502       \u251c\u2500\u2500 qr(matrix: pypynum.matrices.Matrix, reduce: bool) -> tuple\r\n\u2502       \u251c\u2500\u2500 rank_decomp(matrix: pypynum.matrices.Matrix) -> tuple\r\n\u2502       \u251c\u2500\u2500 rotate90(matrix: pypynum.matrices.Matrix, times: int) -> pypynum.matrices.Matrix\r\n\u2502       \u251c\u2500\u2500 svd(matrix: pypynum.matrices.Matrix, full: bool, calc_uv: bool) -> tuple\r\n\u2502       \u251c\u2500\u2500 tril_indices(n: int, k: int, m: int) -> tuple\r\n\u2502       \u2514\u2500\u2500 triu_indices(n: int, k: int, m: int) -> tuple\r\n\u251c\u2500\u2500 multiprec\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2502   \u2514\u2500\u2500 MPComplex(object)/__init__(self: Any, real: Any, imag: Any, sigfigs: Any) -> Any\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u251c\u2500\u2500 _remove_trailing_zeros(value: typing.Any) -> str\r\n\u2502       \u251c\u2500\u2500 _setprec(sigfigs: int) -> Any\r\n\u2502       \u251c\u2500\u2500 asmpc(real: typing.Union[int, float, str, decimal.Decimal, complex, pypynum.multiprec.MPComplex], imag: typing.Union[int, float, str, decimal.Decimal], sigfigs: int) -> pypynum.multiprec.MPComplex\r\n\u2502       \u251c\u2500\u2500 frac2dec(frac: fractions.Fraction, sigfigs: int) -> decimal.Decimal\r\n\u2502       \u251c\u2500\u2500 mp_acos(x: typing.Union[int, float, str, decimal.Decimal], sigfigs: int) -> decimal.Decimal\r\n\u2502       \u251c\u2500\u2500 mp_asin(x: typing.Union[int, float, str, decimal.Decimal], sigfigs: int) -> decimal.Decimal\r\n\u2502       \u251c\u2500\u2500 mp_atan(x: typing.Union[int, float, str, decimal.Decimal], sigfigs: int) -> decimal.Decimal\r\n\u2502       \u251c\u2500\u2500 mp_atan2(y: typing.Union[int, float, str, decimal.Decimal], x: typing.Union[int, float, str, decimal.Decimal], sigfigs: int) -> decimal.Decimal\r\n\u2502       \u251c\u2500\u2500 mp_catalan(sigfigs: int) -> decimal.Decimal\r\n\u2502       \u251c\u2500\u2500 mp_cos(x: typing.Union[int, float, str, decimal.Decimal], sigfigs: int) -> decimal.Decimal\r\n\u2502       \u251c\u2500\u2500 mp_cosh(x: typing.Union[int, float, str, decimal.Decimal], sigfigs: int) -> decimal.Decimal\r\n\u2502       \u251c\u2500\u2500 mp_e(sigfigs: int, method: str) -> decimal.Decimal\r\n\u2502       \u251c\u2500\u2500 mp_euler_gamma(sigfigs: int) -> decimal.Decimal\r\n\u2502       \u251c\u2500\u2500 mp_exp(x: typing.Union[int, float, str, decimal.Decimal], sigfigs: int, builtin: bool) -> decimal.Decimal\r\n\u2502       \u251c\u2500\u2500 mp_fresnel_c(x: typing.Union[int, float, str, decimal.Decimal], sigfigs: int) -> decimal.Decimal\r\n\u2502       \u251c\u2500\u2500 mp_fresnel_s(x: typing.Union[int, float, str, decimal.Decimal], sigfigs: int) -> decimal.Decimal\r\n\u2502       \u251c\u2500\u2500 mp_ln(x: typing.Union[int, float, str, decimal.Decimal], sigfigs: int, builtin: bool) -> decimal.Decimal\r\n\u2502       \u251c\u2500\u2500 mp_log(x: typing.Union[int, float, str, decimal.Decimal], base: typing.Union[int, float, str, decimal.Decimal], sigfigs: int, builtin: bool) -> decimal.Decimal\r\n\u2502       \u251c\u2500\u2500 mp_phi(sigfigs: int, method: str) -> decimal.Decimal\r\n\u2502       \u251c\u2500\u2500 mp_pi(sigfigs: int, method: str) -> decimal.Decimal\r\n\u2502       \u251c\u2500\u2500 mp_sin(x: typing.Union[int, float, str, decimal.Decimal], sigfigs: int) -> decimal.Decimal\r\n\u2502       \u2514\u2500\u2500 mp_sinh(x: typing.Union[int, float, str, decimal.Decimal], sigfigs: int) -> decimal.Decimal\r\n\u251c\u2500\u2500 networks\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2502   \u2514\u2500\u2500 NeuralNetwork(object)/__init__(self: Any, _input: Any, _hidden: Any, _output: Any) -> Any\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u2514\u2500\u2500 neuraln(_input: Any, _hidden: Any, _output: Any) -> Any\r\n\u251c\u2500\u2500 numbers\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u251c\u2500\u2500 float2fraction(number: float, mixed: bool, error: float) -> tuple\r\n\u2502       \u251c\u2500\u2500 int2roman(integer: int, overline: bool) -> str\r\n\u2502       \u251c\u2500\u2500 int2words(integer: int) -> str\r\n\u2502       \u251c\u2500\u2500 parse_float(s: str) -> tuple\r\n\u2502       \u251c\u2500\u2500 roman2int(roman_num: str) -> int\r\n\u2502       \u251c\u2500\u2500 split_float(s: str) -> tuple\r\n\u2502       \u2514\u2500\u2500 str2int(string: str) -> int\r\n\u251c\u2500\u2500 plotting\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u251c\u2500\u2500 background(right: typing.Union[int, float], left: typing.Union[int, float], top: typing.Union[int, float], bottom: typing.Union[int, float], complexity: typing.Union[int, float], ratio: typing.Union[int, float], string: bool) -> typing.Union[list, str]\r\n\u2502       \u251c\u2500\u2500 binary(function: Any, right: typing.Union[int, float], left: typing.Union[int, float], top: typing.Union[int, float], bottom: typing.Union[int, float], complexity: typing.Union[int, float], ratio: typing.Union[int, float], error: Any, compare: Any, string: bool, basic: list, character: str, data: bool, coloration: Any) -> typing.Union[list, str]\r\n\u2502       \u251c\u2500\u2500 c_unary(function: Any, projection: str, right: typing.Union[int, float], left: typing.Union[int, float], top: typing.Union[int, float], bottom: typing.Union[int, float], complexity: typing.Union[int, float], ratio: typing.Union[int, float], string: bool, basic: list, character: str, data: bool, coloration: Any) -> typing.Union[list, str]\r\n\u2502       \u251c\u2500\u2500 change(data: typing.Union[list, str]) -> typing.Union[list, str]\r\n\u2502       \u251c\u2500\u2500 color(text: str, rgb: typing.Union[list, tuple]) -> str\r\n\u2502       \u2514\u2500\u2500 unary(function: Any, right: typing.Union[int, float], left: typing.Union[int, float], top: typing.Union[int, float], bottom: typing.Union[int, float], complexity: typing.Union[int, float], ratio: typing.Union[int, float], string: bool, basic: list, character: str, data: bool, coloration: Any) -> typing.Union[list, str]\r\n\u251c\u2500\u2500 polys\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2502   \u2514\u2500\u2500 Polynomial(object)/__init__(self: Any, terms: Any) -> Any\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u251c\u2500\u2500 chebgauss(n: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 chebpoly(n: Any, single: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 from_coeffs(coeffs: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 from_coords(coords: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 laggauss(n: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 lagpoly(n: Any, single: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 leggauss(n: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 legpoly(n: Any, single: Any) -> Any\r\n\u2502       \u2514\u2500\u2500 poly(terms: Any) -> Any\r\n\u251c\u2500\u2500 pprinters\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u2514\u2500\u2500 pprint_matrix(matrix: Any, style: Any, output: Any) -> Any\r\n\u251c\u2500\u2500 random\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u251c\u2500\u2500 __create_nested_list(dimensions: Any, func: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 __validate_shape(shape: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 choice(seq: typing.Union[list, tuple, str], shape: typing.Union[list, tuple]) -> Any\r\n\u2502       \u251c\u2500\u2500 gauss(mu: typing.Union[int, float], sigma: typing.Union[int, float], shape: typing.Union[list, tuple]) -> typing.Union[float, list]\r\n\u2502       \u251c\u2500\u2500 rand(shape: typing.Union[list, tuple]) -> typing.Union[float, list]\r\n\u2502       \u251c\u2500\u2500 randint(a: int, b: int, shape: typing.Union[list, tuple]) -> typing.Union[int, list]\r\n\u2502       \u2514\u2500\u2500 uniform(a: typing.Union[int, float], b: typing.Union[int, float], shape: typing.Union[list, tuple]) -> typing.Union[float, list]\r\n\u251c\u2500\u2500 regs\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u251c\u2500\u2500 lin_reg(x: typing.Union[list, tuple], y: typing.Union[list, tuple]) -> list\r\n\u2502       \u251c\u2500\u2500 par_reg(x: typing.Union[list, tuple], y: typing.Union[list, tuple]) -> list\r\n\u2502       \u2514\u2500\u2500 poly_reg(x: typing.Union[list, tuple], y: typing.Union[list, tuple], n: int) -> list\r\n\u251c\u2500\u2500 seqs\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u251c\u2500\u2500 arithmetic_sequence(a1: typing.Union[int, float], an: typing.Union[int, float], d: typing.Union[int, float], n: typing.Union[int, float], s: typing.Union[int, float]) -> dict\r\n\u2502       \u251c\u2500\u2500 bell(n: int) -> list\r\n\u2502       \u251c\u2500\u2500 bernoulli(n: int, single: bool) -> typing.Union[list, tuple]\r\n\u2502       \u251c\u2500\u2500 catalan(n: int, single: bool) -> typing.Union[int, list]\r\n\u2502       \u251c\u2500\u2500 farey(n: int) -> list\r\n\u2502       \u251c\u2500\u2500 fibonacci(n: int, single: bool) -> typing.Union[int, list]\r\n\u2502       \u251c\u2500\u2500 geometric_sequence(a1: typing.Union[int, float], an: typing.Union[int, float], r: typing.Union[int, float], n: typing.Union[int, float], s: typing.Union[int, float]) -> dict\r\n\u2502       \u251c\u2500\u2500 lucas(n: int, single: bool) -> typing.Union[int, list]\r\n\u2502       \u251c\u2500\u2500 padovan(n: int, single: bool) -> typing.Union[int, list]\r\n\u2502       \u251c\u2500\u2500 pascal(n: int) -> list\r\n\u2502       \u251c\u2500\u2500 pell(n: int, single: bool) -> typing.Union[int, list]\r\n\u2502       \u251c\u2500\u2500 pelllucas(n: int, single: bool) -> typing.Union[int, list]\r\n\u2502       \u251c\u2500\u2500 perrin(n: int, single: bool) -> typing.Union[int, list]\r\n\u2502       \u251c\u2500\u2500 recaman(n: int, single: bool) -> typing.Union[int, list]\r\n\u2502       \u251c\u2500\u2500 stirling1(n: int) -> list\r\n\u2502       \u251c\u2500\u2500 stirling2(n: int) -> list\r\n\u2502       \u251c\u2500\u2500 sylvester(n: int, single: bool) -> typing.Union[int, list]\r\n\u2502       \u251c\u2500\u2500 tetranacci(n: int, single: bool) -> typing.Union[int, list]\r\n\u2502       \u2514\u2500\u2500 tribonacci(n: int, single: bool) -> typing.Union[int, list]\r\n\u251c\u2500\u2500 special\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u251c\u2500\u2500 besseli0(x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 besseli1(x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 besseliv(v: typing.Union[int, float], x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 besselj0(x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 besselj1(x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 besseljv(v: typing.Union[int, float], x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 hyp0f1(b0: typing.Union[int, float, complex], z: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 hyp1f1(a0: typing.Union[int, float, complex], b0: typing.Union[int, float, complex], z: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 hyp2f1(a0: typing.Union[int, float, complex], a1: typing.Union[int, float, complex], b0: typing.Union[int, float, complex], z: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 hyppfq(a: typing.Union[list, tuple], b: typing.Union[list, tuple], z: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 qbeta(a: typing.Union[int, float, complex], b: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 qbinomial(n: typing.Union[int, float, complex], m: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 qcos_large(x: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 qcos_small(x: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 qcosh_large(x: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 qcosh_small(x: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 qexp_large(z: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 qexp_small(z: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 qfactorial(n: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 qgamma(n: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 qpi(q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 qpochhammer(a: typing.Union[int, float, complex], q: typing.Union[int, float, complex], n: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 qsin_large(x: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 qsin_small(x: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u251c\u2500\u2500 qsinh_large(x: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u2502       \u2514\u2500\u2500 qsinh_small(x: typing.Union[int, float, complex], q: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n\u251c\u2500\u2500 stattest\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u251c\u2500\u2500 chi2_cont(contingency: list, lambda_: float, calc_p: bool, corr: bool) -> tuple\r\n\u2502       \u251c\u2500\u2500 chisquare(observed: list, expected: list) -> tuple\r\n\u2502       \u251c\u2500\u2500 kurttest(data: list, two_tailed: bool) -> tuple\r\n\u2502       \u251c\u2500\u2500 mediantest(samples: Any, ties: Any, lambda_: Any, corr: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 normaltest(data: list) -> tuple\r\n\u2502       \u2514\u2500\u2500 skewtest(data: list, two_tailed: bool) -> tuple\r\n\u251c\u2500\u2500 symbols\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u2514\u2500\u2500 parse_expr(expr: str) -> list\r\n\u251c\u2500\u2500 tensors\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2502   \u2514\u2500\u2500 Tensor(pypynum.arrays.Array)/__init__(self: Any, data: Any, check: Any) -> Any\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u251c\u2500\u2500 ten(data: list) -> pypynum.tensors.Tensor\r\n\u2502       \u2514\u2500\u2500 tensor_and_number(tensor: Any, operator: Any, number: Any) -> Any\r\n\u251c\u2500\u2500 test\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u251c\u2500\u2500 this\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u251c\u2500\u2500 tools\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u251c\u2500\u2500 classify(array: typing.Union[list, tuple]) -> dict\r\n\u2502       \u251c\u2500\u2500 cos_sim(seq1: typing.Union[list, tuple, str], seq2: typing.Union[list, tuple, str], is_vector: bool) -> float\r\n\u2502       \u251c\u2500\u2500 damerau(x: typing.Union[list, tuple, str], y: typing.Union[list, tuple, str]) -> int\r\n\u2502       \u251c\u2500\u2500 dedup(iterable: typing.Union[list, tuple, str]) -> typing.Union[list, tuple, str]\r\n\u2502       \u251c\u2500\u2500 fast_pow(a: typing.Any, n: int, init: typing.Any, mul: typing.Callable) -> typing.Any\r\n\u2502       \u251c\u2500\u2500 findall(seq: typing.Union[list, tuple, str], pat: typing.Union[list, tuple, str]) -> list\r\n\u2502       \u251c\u2500\u2500 frange(start: typing.Union[int, float], stop: typing.Union[int, float], step: float) -> list\r\n\u2502       \u251c\u2500\u2500 geomspace(start: typing.Union[int, float], stop: typing.Union[int, float], number: int) -> list\r\n\u2502       \u251c\u2500\u2500 kmp_table(pattern: typing.Union[list, tuple, str]) -> list\r\n\u2502       \u251c\u2500\u2500 lcsubseq(x: typing.Union[list, tuple, str], y: typing.Union[list, tuple, str]) -> list\r\n\u2502       \u251c\u2500\u2500 lcsubstr(x: typing.Union[list, tuple, str], y: typing.Union[list, tuple, str]) -> list\r\n\u2502       \u251c\u2500\u2500 levenshtein(x: typing.Union[list, tuple, str], y: typing.Union[list, tuple, str]) -> int\r\n\u2502       \u251c\u2500\u2500 linspace(start: typing.Union[int, float], stop: typing.Union[int, float], number: int) -> list\r\n\u2502       \u251c\u2500\u2500 lstrip(sequence: typing.Any, keys: typing.Any) -> typing.Any\r\n\u2502       \u251c\u2500\u2500 magic_square(n: int) -> list\r\n\u2502       \u251c\u2500\u2500 primality(n: int, iter_num: int) -> bool\r\n\u2502       \u251c\u2500\u2500 prime_factors(integer: int, dictionary: bool, pollard_rho: bool) -> typing.Union[list, dict]\r\n\u2502       \u251c\u2500\u2500 primes(limit: int) -> list\r\n\u2502       \u251c\u2500\u2500 replace(seq: typing.Union[list, tuple], old: typing.Union[list, tuple], new: typing.Union[list, tuple], count: int) -> typing.Union[list, tuple]\r\n\u2502       \u251c\u2500\u2500 rstrip(sequence: typing.Any, keys: typing.Any) -> typing.Any\r\n\u2502       \u251c\u2500\u2500 semiprimes(limit: int) -> list\r\n\u2502       \u251c\u2500\u2500 split(iterable: typing.Union[list, tuple, str], key: typing.Union[list, tuple], retain: bool) -> list\r\n\u2502       \u251c\u2500\u2500 strip(sequence: typing.Any, keys: typing.Any) -> typing.Any\r\n\u2502       \u251c\u2500\u2500 strip_helper(sequence: typing.Any, keys_set: set, strip_start: bool, strip_end: bool) -> typing.Any\r\n\u2502       \u2514\u2500\u2500 twinprimes(limit: int) -> list\r\n\u251c\u2500\u2500 trees\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2502   \u251c\u2500\u2500 BTNode(object)/__init__(self: Any, data: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 BinaryTree(object)/__init__(self: Any, root: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 MTNode(object)/__init__(self: Any, data: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 MultiTree(object)/__init__(self: Any, root: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 RBTNode(object)/__init__(self: Any, data: Any, color: Any) -> Any\r\n\u2502   \u2502   \u2514\u2500\u2500 RedBlackTree(object)/__init__(self: Any) -> Any\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u251c\u2500\u2500 types\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u251c\u2500\u2500 ufuncs\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u251c\u2500\u2500 add(x: Any, y: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 apply(a: Any, func: Any, rtype: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 base_ufunc(arrays: Any, func: Any, args: Any, rtype: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 divide(x: Any, y: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 eq(x: Any, y: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 floor_divide(x: Any, y: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 ge(x: Any, y: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 gt(x: Any, y: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 le(x: Any, y: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 lt(x: Any, y: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 modulo(x: Any, y: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 multiply(x: Any, y: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 ne(x: Any, y: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 power(x: Any, y: Any, m: Any) -> Any\r\n\u2502       \u251c\u2500\u2500 subtract(x: Any, y: Any) -> Any\r\n\u2502       \u2514\u2500\u2500 ufunc_helper(x: Any, y: Any, func: Any) -> Any\r\n\u251c\u2500\u2500 utils\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2502   \u251c\u2500\u2500 InfIterator(object)/__init__(self: Any, start: typing.Union[int, float, complex], mode: str, common: typing.Union[int, float, complex]) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 IntervalSet(object)/__init__(self: Any, intervals: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 LinkedList(object)/__init__(self: Any) -> Any\r\n\u2502   \u2502   \u251c\u2500\u2500 LinkedListNode(object)/__init__(self: Any, value: Any, next_node: Any) -> Any\r\n\u2502   \u2502   \u2514\u2500\u2500 OrderedSet(object)/__init__(self: Any, sequence: Any) -> Any\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u251c\u2500\u2500 vectors\r\n\u2502   \u251c\u2500\u2500 CLASS\r\n\u2502   \u2502   \u2514\u2500\u2500 Vector(pypynum.arrays.Array)/__init__(self: Any, data: Any, check: Any) -> Any\r\n\u2502   \u2514\u2500\u2500 FUNCTION\r\n\u2502       \u2514\u2500\u2500 vec(data: Any) -> Any\r\n\u2514\u2500\u2500 zh_cn\r\n    \u251c\u2500\u2500 CLASS\r\n    \u2514\u2500\u2500 FUNCTION\r\n        \u251c\u2500\u2500 Fraction\u8f6c\u4e3aDecimal(\u5206\u6570\u5bf9\u8c61: fractions.Fraction, \u6709\u6548\u4f4d\u6570: int) -> decimal.Decimal\r\n        \u251c\u2500\u2500 RC4\u4f2a\u968f\u673a\u751f\u6210\u7b97\u6cd5(\u5bc6\u94a5\u5e8f\u5217: list) -> Any\r\n        \u251c\u2500\u2500 RC4\u521d\u59cb\u5316\u5bc6\u94a5\u8c03\u5ea6\u7b97\u6cd5(\u5bc6\u94a5: bytes) -> list\r\n        \u251c\u2500\u2500 RC4\u5bc6\u7801(\u6587\u672c: bytes, \u5bc6\u94a5: bytes) -> bytes\r\n        \u251c\u2500\u2500 ROT13\u5bc6\u7801(\u6587\u672c: str) -> str\r\n        \u251c\u2500\u2500 S\u578b\u51fd\u6570(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 base64\u5bc6\u7801(\u6587\u672c: str, \u89e3\u5bc6: bool) -> str\r\n        \u251c\u2500\u2500 x\u5bf9\u6570y\u4e58\u79ef(x: float, y: float) -> float\r\n        \u251c\u2500\u2500 y\u6b21\u65b9\u6839(\u88ab\u5f00\u65b9\u6570: typing.Union[int, float, complex], \u5f00\u65b9\u6570: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n        \u251c\u2500\u2500 \u4e00\u7ef4\u5085\u91cc\u53f6\u53d8\u6362(\u6570\u636e: Any) -> pypynum.fft.FT1D\r\n        \u251c\u2500\u2500 \u4e0a\u4f3d\u739b(s: typing.Union[int, float, complex], x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n        \u251c\u2500\u2500 \u4e0a\u6807\u8f6c\u6574\u6570(\u4e0a\u6807\u5b57\u7b26\u4e32: str) -> str\r\n        \u251c\u2500\u2500 \u4e0b\u4f3d\u739b(s: typing.Union[int, float, complex], x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n        \u251c\u2500\u2500 \u4e0b\u6807\u8f6c\u6574\u6570(\u4e0b\u6807\u5b57\u7b26\u4e32: str) -> str\r\n        \u251c\u2500\u2500 \u4e2d\u4f4d\u6570(\u6570\u636e: typing.List[float]) -> float\r\n        \u251c\u2500\u2500 \u4e2d\u56fd\u5269\u4f59\u5b9a\u7406(n: typing.List[int], a: typing.List[int]) -> int\r\n        \u251c\u2500\u2500 \u4e2d\u5fc3\u77e9(\u6570\u636e: typing.List[float], \u9636\u6570: int) -> float\r\n        \u251c\u2500\u2500 \u4e58\u79ef\u548c(\u591a\u4e2a\u6570\u7ec4: typing.List[typing.Any]) -> float\r\n        \u251c\u2500\u2500 \u4ee3\u66ff\u5bc6\u7801(\u6587\u672c: str, \u66ff\u6362\u6620\u5c04: dict, \u89e3\u5bc6: bool) -> str\r\n        \u251c\u2500\u2500 \u4f17\u6570(\u6570\u636e: typing.List[typing.Any]) -> Any\r\n        \u251c\u2500\u2500 \u4f3d\u739b\u51fd\u6570(alpha: float) -> float\r\n        \u251c\u2500\u2500 \u4f59\u5207(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u4f59\u5272(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u4f59\u5f26(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u504f\u5ea6(\u6570\u636e: typing.List[float]) -> float\r\n        \u251c\u2500\u2500 \u5168\u4e00(\u5f62\u72b6: Any, \u8fd4\u56de\u7c7b\u578b: Any) -> Any\r\n        \u251c\u2500\u2500 \u5168\u90e8\u586b\u5145(\u5f62\u72b6: Any, \u586b\u5145\u503c: Any, \u8fd4\u56de\u7c7b\u578b: Any) -> Any\r\n        \u251c\u2500\u2500 \u5168\u96f6(\u5f62\u72b6: Any, \u8fd4\u56de\u7c7b\u578b: Any) -> Any\r\n        \u251c\u2500\u2500 \u5199\u5165(\u6587\u4ef6: str, \u5bf9\u8c61: object) -> Any\r\n        \u251c\u2500\u2500 \u51e0\u4f55\u5e73\u5747\u6570(\u6570\u636e: typing.List[float]) -> float\r\n        \u251c\u2500\u2500 \u51ef\u6492\u5bc6\u7801(\u6587\u672c: str, \u79fb\u4f4d: int, \u89e3\u5bc6: bool) -> str\r\n        \u251c\u2500\u2500 \u5206\u4f4d\u6570(\u6570\u636e: list, \u5206\u4f4d\u503c: float, \u63d2\u503c\u65b9\u6cd5: str, \u5df2\u6392\u5e8f: bool) -> float\r\n        \u251c\u2500\u2500 \u5224\u5b9a\u7cfb\u6570(x: typing.List[float], y: typing.List[float]) -> float\r\n        \u251c\u2500\u2500 \u5224\u65ad\u5e73\u65b9\u6570(n: int) -> bool\r\n        \u251c\u2500\u2500 \u52a0\u6743\u5e73\u5747(\u6570\u636e: typing.List[float], \u6743\u91cd: typing.List[float]) -> float\r\n        \u251c\u2500\u2500 \u534f\u65b9\u5dee(x: typing.List[float], y: typing.List[float], \u81ea\u7531\u5ea6: int) -> float\r\n        \u251c\u2500\u2500 \u539f\u6839(a: int, \u5355\u4e2a: bool) -> typing.Union[int, typing.List[int]]\r\n        \u251c\u2500\u2500 \u539f\u70b9\u77e9(\u6570\u636e: typing.List[float], \u9636\u6570: int) -> float\r\n        \u251c\u2500\u2500 \u53cc\u66f2\u4f59\u5207(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u53cc\u66f2\u4f59\u5272(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u53cc\u66f2\u4f59\u5f26(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u53cc\u66f2\u6b63\u5207(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u53cc\u66f2\u6b63\u5272(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u53cc\u66f2\u6b63\u5f26(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u53cd\u4f59\u5207(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u53cd\u4f59\u5272(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u53cd\u4f59\u5f26(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u53cd\u53cc\u66f2\u4f59\u5207(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u53cd\u53cc\u66f2\u4f59\u5272(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u53cd\u53cc\u66f2\u4f59\u5f26(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u53cd\u53cc\u66f2\u6b63\u5207(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u53cd\u53cc\u66f2\u6b63\u5272(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u53cd\u53cc\u66f2\u6b63\u5f26(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u53cd\u6b63\u5207(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u53cd\u6b63\u5272(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u53cd\u6b63\u5f26(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u53ef\u80fd\u662f\u5e73\u65b9\u6570(n: int) -> bool\r\n        \u251c\u2500\u2500 \u586b\u5145\u5e8f\u5217(\u5f62\u72b6: Any, \u5e8f\u5217: Any, \u91cd\u590d: Any, \u586b\u5145: Any, \u8fd4\u56de\u7c7b\u578b: Any) -> Any\r\n        \u251c\u2500\u2500 \u591a\u6b21\u65b9\u6839\u53d6\u6574(\u88ab\u5f00\u65b9\u6570: int, \u5f00\u65b9\u6570: int) -> int\r\n        \u251c\u2500\u2500 \u591a\u7cbe\u5ea6\u4f59\u5f26(x: typing.Union[int, float], \u6709\u6548\u4f4d\u6570: int) -> decimal.Decimal\r\n        \u251c\u2500\u2500 \u591a\u7cbe\u5ea6\u53cc\u66f2\u4f59\u5f26(x: typing.Union[int, float], \u6709\u6548\u4f4d\u6570: int) -> decimal.Decimal\r\n        \u251c\u2500\u2500 \u591a\u7cbe\u5ea6\u53cc\u66f2\u6b63\u5f26(x: typing.Union[int, float], \u6709\u6548\u4f4d\u6570: int) -> decimal.Decimal\r\n        \u251c\u2500\u2500 \u591a\u7cbe\u5ea6\u53cd\u4f59\u5f26(x: typing.Union[int, float], \u6709\u6548\u4f4d\u6570: int) -> decimal.Decimal\r\n        \u251c\u2500\u2500 \u591a\u7cbe\u5ea6\u53cd\u6b63\u5207(x: typing.Union[int, float], \u6709\u6548\u4f4d\u6570: int) -> decimal.Decimal\r\n        \u251c\u2500\u2500 \u591a\u7cbe\u5ea6\u53cd\u6b63\u5f26(x: typing.Union[int, float], \u6709\u6548\u4f4d\u6570: int) -> decimal.Decimal\r\n        \u251c\u2500\u2500 \u591a\u7cbe\u5ea6\u5706\u5468\u7387(\u6709\u6548\u4f4d\u6570: int, \u65b9\u6cd5: str) -> decimal.Decimal\r\n        \u251c\u2500\u2500 \u591a\u7cbe\u5ea6\u590d\u6570(\u5b9e\u90e8: typing.Union[int, float, str, decimal.Decimal], \u865a\u90e8: typing.Union[int, float, str, decimal.Decimal], \u6709\u6548\u4f4d\u6570: int) -> pypynum.multiprec.MPComplex\r\n        \u251c\u2500\u2500 \u591a\u7cbe\u5ea6\u5bf9\u6570(\u771f\u6570: typing.Union[int, float], \u5e95\u6570: typing.Union[int, float], \u6709\u6548\u4f4d\u6570: int, \u4f7f\u7528\u5185\u7f6e\u65b9\u6cd5: bool) -> decimal.Decimal\r\n        \u251c\u2500\u2500 \u591a\u7cbe\u5ea6\u65b9\u4f4d\u89d2(y: typing.Union[int, float], x: typing.Union[int, float], \u6709\u6548\u4f4d\u6570: int) -> decimal.Decimal\r\n        \u251c\u2500\u2500 \u591a\u7cbe\u5ea6\u6b27\u62c9\u4f3d\u9a6c(\u6709\u6548\u4f4d\u6570: int) -> decimal.Decimal\r\n        \u251c\u2500\u2500 \u591a\u7cbe\u5ea6\u6b63\u5f26(x: typing.Union[int, float], \u6709\u6548\u4f4d\u6570: int) -> decimal.Decimal\r\n        \u251c\u2500\u2500 \u591a\u7cbe\u5ea6\u81ea\u7136\u5bf9\u6570(\u771f\u6570: typing.Union[int, float], \u6709\u6548\u4f4d\u6570: int, \u4f7f\u7528\u5185\u7f6e\u65b9\u6cd5: bool) -> decimal.Decimal\r\n        \u251c\u2500\u2500 \u591a\u7cbe\u5ea6\u81ea\u7136\u5e38\u6570(\u6709\u6548\u4f4d\u6570: int, \u65b9\u6cd5: str) -> decimal.Decimal\r\n        \u251c\u2500\u2500 \u591a\u7cbe\u5ea6\u81ea\u7136\u6307\u6570(\u6307\u6570: typing.Union[int, float], \u6709\u6548\u4f4d\u6570: int, \u4f7f\u7528\u5185\u7f6e\u65b9\u6cd5: bool) -> decimal.Decimal\r\n        \u251c\u2500\u2500 \u591a\u7cbe\u5ea6\u83f2\u6d85\u8033\u4f59\u5f26\u79ef\u5206(x: typing.Union[int, float], \u6709\u6548\u4f4d\u6570: int) -> decimal.Decimal\r\n        \u251c\u2500\u2500 \u591a\u7cbe\u5ea6\u83f2\u6d85\u8033\u6b63\u5f26\u79ef\u5206(x: typing.Union[int, float], \u6709\u6548\u4f4d\u6570: int) -> decimal.Decimal\r\n        \u251c\u2500\u2500 \u591a\u7cbe\u5ea6\u9ec4\u91d1\u5206\u5272\u7387(\u6709\u6548\u4f4d\u6570: int, \u65b9\u6cd5: str) -> decimal.Decimal\r\n        \u251c\u2500\u2500 \u591a\u9879\u5f0f\u65b9\u7a0b(\u7cfb\u6570: list) -> list\r\n        \u251c\u2500\u2500 \u5b57\u7b26\u4e32\u8f6c\u6574\u6570(\u5b57\u7b26\u4e32: str) -> int\r\n        \u251c\u2500\u2500 \u5bfc\u6570(\u51fd\u6570: Any, \u53c2\u6570: float, \u6b65\u957f: float, \u989d\u5916\u53c2\u6570: Any, \u989d\u5916\u5173\u952e\u5b57\u53c2\u6570: Any) -> float\r\n        \u251c\u2500\u2500 \u5cf0\u5ea6(\u6570\u636e: typing.List[float], \u8d39\u5e0c\u5c14: bool) -> float\r\n        \u251c\u2500\u2500 \u5e0c\u5c14256\u5bc6\u7801(\u6587\u672c: bytes, \u5bc6\u94a5: list, \u89e3\u5bc6: bool) -> bytes\r\n        \u251c\u2500\u2500 \u5e73\u5747\u6570(\u6570\u636e: typing.List[float]) -> float\r\n        \u251c\u2500\u2500 \u5e73\u65b9\u5e73\u5747\u6570(\u6570\u636e: typing.List[float]) -> float\r\n        \u251c\u2500\u2500 \u5e73\u65b9\u6839\u53d6\u6574(\u88ab\u5f00\u65b9\u6570: int) -> int\r\n        \u251c\u2500\u2500 \u5e8f\u5217\u6eda\u52a8(\u5e8f\u5217: typing.Iterator[typing.Any], \u504f\u79fb: int) -> typing.Iterator[typing.Any]\r\n        \u251c\u2500\u2500 \u5f52\u4e00\u5316(\u6570\u636e: typing.List[float], \u76ee\u6807: float) -> typing.List[float]\r\n        \u251c\u2500\u2500 \u6269\u5c55\u6b27\u51e0\u91cc\u5f97\u7b97\u6cd5(a: int, b: int) -> typing.Tuple[int, int, int]\r\n        \u251c\u2500\u2500 \u62c6\u5206\u6d6e\u70b9\u6570\u5b57\u7b26\u4e32(\u5b57\u7b26\u4e32: str) -> tuple\r\n        \u251c\u2500\u2500 \u6392\u5217\u6570(\u603b\u6570: int, \u9009\u53d6\u6570: int) -> int\r\n        \u251c\u2500\u2500 \u6570\u7ec4(\u6570\u636e: list, \u68c0\u67e5: bool) -> pypynum.arrays.Array\r\n        \u251c\u2500\u2500 \u6574\u6570\u8f6c\u4e0a\u6807(\u6807\u51c6\u5b57\u7b26\u4e32: str) -> str\r\n        \u251c\u2500\u2500 \u6574\u6570\u8f6c\u4e0b\u6807(\u6807\u51c6\u5b57\u7b26\u4e32: str) -> str\r\n        \u251c\u2500\u2500 \u6574\u6570\u8f6c\u5355\u8bcd(\u6574\u6570: int) -> str\r\n        \u251c\u2500\u2500 \u6574\u6570\u8f6c\u7f57\u9a6c\u6570(\u6574\u6570: int, \u4e0a\u5212\u7ebf: bool) -> str\r\n        \u251c\u2500\u2500 \u65b9\u5dee(\u6570\u636e: typing.List[float], \u81ea\u7531\u5ea6: int) -> float\r\n        \u251c\u2500\u2500 \u666e\u83b1\u8d39\u5c14\u5bc6\u7801(\u6587\u672c: str, \u5bc6\u94a5: str, \u89e3\u5bc6: bool) -> str\r\n        \u251c\u2500\u2500 \u6700\u5927\u516c\u7ea6\u6570(args: int) -> int\r\n        \u251c\u2500\u2500 \u6700\u5c0f\u516c\u500d\u6570(args: int) -> int\r\n        \u251c\u2500\u2500 \u6781\u5dee(\u6570\u636e: typing.List[float]) -> float\r\n        \u251c\u2500\u2500 \u6807\u51c6\u5dee(\u6570\u636e: typing.List[float], \u81ea\u7531\u5ea6: int) -> float\r\n        \u251c\u2500\u2500 \u6a21\u8fd0\u7b97\u9636(a: int, n: int, b: int) -> int\r\n        \u251c\u2500\u2500 \u6b27\u62c9\u51fd\u6570(n: int) -> int\r\n        \u251c\u2500\u2500 \u6b63\u5207(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u6b63\u5272(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u6b63\u5f26(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u6d6e\u70b9\u6570\u8f6c\u5206\u6570(\u6570\u503c: float, \u662f\u5426\u5e26\u5206\u6570: bool, \u8bef\u5dee: float) -> tuple\r\n        \u251c\u2500\u2500 \u76f8\u5173\u7cfb\u6570(x: typing.List[float], y: typing.List[float]) -> float\r\n        \u251c\u2500\u2500 \u79ef\u5206(\u51fd\u6570: Any, \u79ef\u5206\u5f00\u59cb: float, \u79ef\u5206\u7ed3\u675f: float, \u79ef\u5206\u70b9\u6570: int, \u989d\u5916\u53c2\u6570: Any, \u989d\u5916\u5173\u952e\u5b57\u53c2\u6570: Any) -> float\r\n        \u251c\u2500\u2500 \u79ef\u7d2f\u4e58\u79ef(\u6570\u636e: typing.List[float]) -> float\r\n        \u251c\u2500\u2500 \u7b26\u53f7\u51fd\u6570(x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n        \u251c\u2500\u2500 \u7c7b\u4f3c\u5f62\u72b6\u5168\u4e00(\u6570\u7ec4A: Any, \u8fd4\u56de\u7c7b\u578b: Any) -> Any\r\n        \u251c\u2500\u2500 \u7c7b\u4f3c\u5f62\u72b6\u5168\u96f6(\u6570\u7ec4A: Any, \u8fd4\u56de\u7c7b\u578b: Any) -> Any\r\n        \u251c\u2500\u2500 \u7c7b\u4f3c\u5f62\u72b6\u586b\u5145(\u6570\u7ec4A: Any, \u586b\u5145\u503c: Any, \u8fd4\u56de\u7c7b\u578b: Any) -> Any\r\n        \u251c\u2500\u2500 \u7d2f\u4e58\u79ef(\u5e8f\u5217: typing.List[float]) -> typing.List[float]\r\n        \u251c\u2500\u2500 \u7d2f\u52a0\u548c(\u5e8f\u5217: typing.List[float]) -> typing.List[float]\r\n        \u251c\u2500\u2500 \u7ebf\u6027\u65b9\u7a0b\u7ec4(\u5de6\u8fb9: list, \u53f3\u8fb9: list) -> list\r\n        \u251c\u2500\u2500 \u7ec4\u5408\u6570(\u603b\u6570: int, \u9009\u53d6\u6570: int) -> int\r\n        \u251c\u2500\u2500 \u7ef4\u5409\u5c3c\u4e9a\u5bc6\u7801(\u6587\u672c: str, \u5bc6\u94a5: str, \u89e3\u5bc6: bool) -> str\r\n        \u251c\u2500\u2500 \u7f57\u9a6c\u6570\u8f6c\u6574\u6570(\u7f57\u9a6c\u6570: str) -> int\r\n        \u251c\u2500\u2500 \u81ea\u7136\u5bf9\u6570(\u771f\u6570: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u81ea\u7136\u6307\u6570(\u6307\u6570: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u83ab\u5c14\u65af\u5bc6\u7801(\u6587\u672c: str, \u89e3\u5bc6: bool) -> str\r\n        \u251c\u2500\u2500 \u89e3\u6790\u6d6e\u70b9\u6570\u5b57\u7b26\u4e32(\u5b57\u7b26\u4e32: str) -> tuple\r\n        \u251c\u2500\u2500 \u8bef\u5dee\u51fd\u6570(x: typing.Union[int, float]) -> typing.Union[int, float]\r\n        \u251c\u2500\u2500 \u8bfb\u53d6(\u6587\u4ef6: str) -> list\r\n        \u251c\u2500\u2500 \u8c03\u548c\u5e73\u5747\u6570(\u6570\u636e: typing.List[float]) -> float\r\n        \u251c\u2500\u2500 \u8d1d\u5854\u51fd\u6570(p: float, q: float) -> float\r\n        \u251c\u2500\u2500 \u8d1d\u585e\u5c14\u51fd\u6570I0(x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n        \u251c\u2500\u2500 \u8d1d\u585e\u5c14\u51fd\u6570I1(x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n        \u251c\u2500\u2500 \u8d1d\u585e\u5c14\u51fd\u6570Iv(v: typing.Union[int, float], x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n        \u251c\u2500\u2500 \u8d1d\u585e\u5c14\u51fd\u6570J0(x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n        \u251c\u2500\u2500 \u8d1d\u585e\u5c14\u51fd\u6570J1(x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n        \u251c\u2500\u2500 \u8d1d\u585e\u5c14\u51fd\u6570Jv(v: typing.Union[int, float], x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]\r\n        \u251c\u2500\u2500 \u8d1f\u4e00\u6574\u6570\u6b21\u5e42(\u6307\u6570: int) -> int\r\n        \u251c\u2500\u2500 \u8f6c\u4e3a\u591a\u7cbe\u5ea6\u590d\u6570(\u5b9e\u90e8: typing.Union[int, float, str, decimal.Decimal, complex, pypynum.multiprec.MPComplex], \u865a\u90e8: typing.Union[int, float, str, decimal.Decimal], \u6709\u6548\u4f4d\u6570: int) -> pypynum.multiprec.MPComplex\r\n        \u251c\u2500\u2500 \u8f6c\u6362\u4e3a\u5217\u8868(\u6570\u636e: Any) -> list\r\n        \u251c\u2500\u2500 \u8f6c\u6362\u4e3a\u6570\u7ec4(\u6570\u636e: Any) -> pypynum.arrays.Array\r\n        \u251c\u2500\u2500 \u8fde\u7eed\u4e58\u79ef(\u4e0b\u754c: int, \u4e0a\u754c: int, \u51fd\u6570: typing.Callable) -> float\r\n        \u251c\u2500\u2500 \u8fde\u7eed\u52a0\u548c(\u4e0b\u754c: int, \u4e0a\u754c: int, \u51fd\u6570: typing.Callable) -> float\r\n        \u251c\u2500\u2500 \u9636\u4e58\u51fd\u6570(n: int) -> int\r\n        \u251c\u2500\u2500 \u963f\u7279\u5df4\u4ec0\u5bc6\u7801(\u6587\u672c: str) -> str\r\n        \u251c\u2500\u2500 \u9891\u7387\u7edf\u8ba1(\u6570\u636e: typing.List[typing.Any]) -> typing.Dict[typing.Any, int]\r\n        \u2514\u2500\u2500 \u9ece\u66fc\u51fd\u6570(alpha: float) -> float\r\n```\r\n\r\n### Code Testing\r\n\r\n```python\r\nfrom pypynum import (arrays, geoms, hypcmpnms, logics, matrices, symbols, tensors, vectors,\r\n                     ciphers, consts, equations, maths, plotting, random, regs, tools)\r\n\r\n...\r\n\r\nprint(arrays.array())\r\nprint(arrays.array([1, 2, 3, 4, 5, 6, 7, 8]))\r\nprint(arrays.array([[1, 2, 3, 4], [5, 6, 7, 8]]))\r\nprint(arrays.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]))\r\n\r\n\"\"\"\r\n[]\r\n[1 2 3 4 5 6 7 8]\r\n[[1 2 3 4]\r\n [5 6 7 8]]\r\n[[[1 2]\r\n  [3 4]]\r\n\r\n [[5 6]\r\n  [7 8]]]\r\n\"\"\"\r\n\r\ntriangle = geoms.Triangle((0, 0), (2, 2), (3, 0))\r\nprint(triangle.perimeter())\r\nprint(triangle.area())\r\nprint(triangle.centroid())\r\n\r\n\"\"\"\r\n8.06449510224598\r\n3.0\r\n(1.6666666666666667, 0.6666666666666666)\r\n\"\"\"\r\n\r\nq0 = hypcmpnms.quat(1, 2, 3, 4)\r\nq1 = hypcmpnms.quat(5, 6, 7, 8)\r\nprint(q0)\r\nprint(q1)\r\nprint(q0 + q1)\r\nprint(q0 * q1)\r\nprint(q0.inverse())\r\nprint(q1.conjugate())\r\n\r\n\"\"\"\r\n(1+2i+3j+4k)\r\n(5+6i+7j+8k)\r\n(6+8i+10j+12k)\r\n(-60+12i+30j+24k)\r\n(0.03333333333333333-0.06666666666666667i-0.1j-0.13333333333333333k)\r\n(5-6i-7j-8k)\r\n\"\"\"\r\n\r\na, b, c = 1, 1, 1\r\nadder0, adder1 = logics.HalfAdder(\"alpha\", a, b), logics.HalfAdder(\"beta\", c, None)\r\nxor0 = logics.XOR(\"alpha\")\r\nff0, ff1 = logics.DFF(\"alpha\"), logics.DFF(\"beta\")\r\nxor0.set_order0(1)\r\nxor0.set_order1(1)\r\nlogics.connector(adder0, adder1)\r\nlogics.connector(adder0, xor0)\r\nlogics.connector(adder1, xor0)\r\nlogics.connector(adder1, ff0)\r\nlogics.connector(xor0, ff1)\r\nprint(\"sum: {}, carry: {}\".format(ff0.out(), ff1.out()))\r\n\r\n\"\"\"\r\nsum: [1], carry: [1]\r\n\"\"\"\r\n\r\nm0 = matrices.mat([[1, 2], [3, 4]])\r\nm1 = matrices.mat([[5, 6], [7, 8]])\r\nprint(m0)\r\nprint(m1)\r\nprint(m0 + m1)\r\nprint(m0 @ m1)\r\nprint(m0.inv())\r\nprint(m1.rank())\r\n\r\n\"\"\"\r\n[[1 2]\r\n [3 4]]\r\n[[5 6]\r\n [7 8]]\r\n[[ 6  8]\r\n [10 12]]\r\n[[19 22]\r\n [43 50]]\r\n[[ -1.9999999999999996   0.9999999999999998]\r\n [  1.4999999999999998 -0.49999999999999994]]\r\n2\r\n\"\"\"\r\n\r\nprint(symbols.BASIC)\r\nprint(symbols.ENGLISH)\r\nprint(symbols.GREEK)\r\nprint(symbols.parse_expr(\"-(10+a-(3.14+b0)*(-5))**(-\u03b6n1-2.718/m\u03a399)//9\"))\r\n\r\n\"\"\"\r\n%()*+-./0123456789\r\nABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\r\nC:\\Users\\Administrator\\PycharmProjects\\pythonProject\\pypynum\\tensors.py:16: FutureWarning: The 'Tensor' class is deprecated and will be removed in a future version. Please use the 'Array' class instead for similar functionality.\r\n  warn(\"The 'Tensor' class is deprecated and will be removed in a future version. \"\r\n\u0391\u0392\u0393\u0394\u0395\u0396\u0397\u0398\u0399\u039a\u039b\u039c\u039d\u039e\u039f\u03a0\u03a1\u03a3\u03a4\u03a5\u03a6\u03a7\u03a8\u03a9\u03b1\u03b2\u03b3\u03b4\u03b5\u03b6\u03b7\u03b8\u03b9\u03ba\u03bb\u03bc\u03bd\u03be\u03bf\u03c0\u03c1\u03c3\u03c4\u03c5\u03c6\u03c7\u03c8\u03c9\r\n[['10', '+', 'a', '-', ['3.14', '+', 'b0'], '*', '-5'], '**', ['-\u03b6n1', '-', '2.718', '/', 'm\u03a399'], '//', '9']\r\n\"\"\"\r\n\r\nt0 = tensors.ten([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])\r\nt1 = tensors.ten([[[9, 10], [11, 12]], [[13, 14], [15, 16]]])\r\nprint(t0)\r\nprint(t1)\r\nprint(t0 + t1)\r\nprint(t0 @ t1)\r\n\r\n\"\"\"\r\n[[[1 2]\r\n  [3 4]]\r\n\r\n [[5 6]\r\n  [7 8]]]\r\n[[[ 9 10]\r\n  [11 12]]\r\n\r\n [[13 14]\r\n  [15 16]]]\r\n[[[10 12]\r\n  [14 16]]\r\n\r\n [[18 20]\r\n  [22 24]]]\r\n[[[ 31  34]\r\n  [ 71  78]]\r\n\r\n [[155 166]\r\n  [211 226]]]\r\n\"\"\"\r\n\r\nstring = \"PyPyNum\"\r\nencrypted = ciphers.caesar(string, 10)\r\nprint(string)\r\nprint(encrypted)\r\nprint(ciphers.caesar(encrypted, 10, decrypt=True))\r\nencrypted = ciphers.vigenere(string, \"ciphers\")\r\nprint(string)\r\nprint(encrypted)\r\nprint(ciphers.vigenere(encrypted, \"ciphers\", decrypt=True))\r\nencrypted = ciphers.morse(string)\r\nprint(string)\r\nprint(encrypted)\r\nprint(ciphers.morse(encrypted, decrypt=True))\r\n\r\n\"\"\"\r\nPyPyNum\r\nZiZiXew\r\nPyPyNum\r\nPyPyNum\r\nRgEfRle\r\nPyPyNum\r\nPyPyNum\r\n.--. -.-- .--. -.-- -. ..- --\r\nPYPYNUM\r\n\"\"\"\r\n\r\nv0 = vectors.vec([1, 2, 3, 4])\r\nv1 = vectors.vec([5, 6, 7, 8])\r\nprint(v0)\r\nprint(v1)\r\nprint(v0 + v1)\r\nprint(v0 @ v1)\r\nprint(v0.normalize())\r\nprint(v1.angles())\r\n\r\n\"\"\"\r\n[1 2 3 4]\r\n[5 6 7 8]\r\n[ 5 12 21 32]\r\n70\r\n[0.18257418583505536  0.3651483716701107  0.5477225575051661  0.7302967433402214]\r\n[1.1820279130506308, 1.0985826410133916, 1.0114070854293842, 0.9191723423169716]\r\n\"\"\"\r\n\r\nprint(consts.TB)\r\nprint(consts.e)\r\nprint(consts.h)\r\nprint(consts.phi)\r\nprint(consts.pi)\r\nprint(consts.tera)\r\n\r\n\"\"\"\r\n1099511627776\r\n2.718281828459045\r\n6.62607015e-34\r\n1.618033988749895\r\n3.141592653589793\r\n1000000000000\r\n\"\"\"\r\n\r\np = [1, -2, -3, 4]\r\nm = [\r\n    [\r\n        [1, 2, 3],\r\n        [6, 10, 12],\r\n        [7, 16, 9]\r\n    ],\r\n    [-1, -2, -3]\r\n]\r\nprint(equations.poly_eq(p))\r\nprint(equations.lin_eq(*m))\r\n\r\n\"\"\"\r\n[(-1.5615528128088307-6.5209667308287455e-24j), (1.0000000000000007+3.241554513744382e-25j), (2.5615528128088294+4.456233626665941e-24j)]\r\n[1.6666666666666665, -0.6666666666666666, -0.4444444444444444]\r\n\"\"\"\r\n\r\nprint(maths.cot(consts.pi / 3))\r\nprint(maths.gamma(1.5))\r\nprint(maths.pi(1, 10, lambda x: x ** 2))\r\nprint(maths.product([2, 3, 5, 7, 11, 13, 17, 19, 23, 29]))\r\nprint(maths.sigma(1, 10, lambda x: x ** 2))\r\nprint(maths.var([2, 3, 5, 7, 11, 13, 17, 19, 23, 29]))\r\n\r\n\"\"\"\r\n0.577350269189626\r\n0.886226925452758\r\n13168189440000\r\n6469693230\r\n385\r\n73.29\r\n\"\"\"\r\n\r\nplt = plotting.unary(lambda x: x ** 2, top=10, bottom=0, character=\"+\")\r\nprint(plt)\r\nprint(plotting.binary(lambda x, y: x ** 2 + y ** 2 - 10, right=10, left=0, compare=\"<=\", basic=plotting.change(plt)))\r\nprint(plotting.c_unary(lambda x: x ** x, right=2, left=-2, top=2, bottom=-2, complexity=20, character=\"-\"))\r\n\r\n\"\"\"\r\n  1.00e+01|         +                               +         \r\n          |                                                   \r\n          |          +                             +          \r\n          |                                                   \r\n          |           +                           +           \r\n          |            +                         +            \r\n          |                                                   \r\n          |             +                       +             \r\n  5.00e+00|_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\r\n          |              +                     +              \r\n          |               +                   +               \r\n          |                +                 +                \r\n          |                 +               +                 \r\n          |                  +             +                  \r\n          |                   +           +                   \r\n          |                    +         +                    \r\n          |                     +++   +++                     \r\n  0.00e+00|________________________+++________________________\r\n           -5.00e+00             0.00e+00             5.00e+00\r\n  1.00e+01|         +                               +         \r\n          |                                                   \r\n          |          +                             +          \r\n          |                                                   \r\n          |.........  +                           +           \r\n          |.............                         +            \r\n          |..............                                     \r\n          |................                     +             \r\n  5.00e+00|................_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\r\n          |................                    +              \r\n          |................                   +               \r\n          |..............  +                 +                \r\n          |.............    +               +                 \r\n          |.........         +             +                  \r\n          |                   +           +                   \r\n          |                    +         +                    \r\n          |                     +++   +++                     \r\n  0.00e+00|________________________+++________________________\r\n           -5.00e+00             0.00e+00             5.00e+00\r\n  2.00e+00|           -                 -           -          -          -            -    \r\n          |               -  -            -          -         -         -           -      \r\n          |                     -           -         -        -        -          -        \r\n          |-                       -          -       -       -        -         -          \r\n          |     -   -                - -       --      -      -       -        -            \r\n          |            -  -              -       -      -     -      -       -             -\r\n          |                  -  - -       - --  - ---  -- -  --     -     - -         - -   \r\n          |                         - -   -  --    --    -   -  - --     -       - -        \r\n          |  -   -  - - -  -          - -- -   ---  ---  -   -   ---   --     - -           \r\n          |             -    -  - - - --    ----- -- -- --- --  --  ---    --           -  -\r\n          |               - -      -     ------------ ----  - --  -- - ---       - - -      \r\n          |    -  -  -  - -  ----- - -- ----------------------- -- ----  - -- --            \r\n          |   -  -   - -         - ---- ---------------------------------      - - - - -  - \r\n  0.00e+00|_ _ _ _ _ _ _ _-_-_-_-_---- ------------------------------------_-- _ _ _ _ _ _ _\r\n          |            -  -   - - ----------------------------------------- -- - - - -      \r\n          |   -  --  -  -       -- -  -  --------------------------------- -           -  - \r\n          |    -          - ---- - - -- --------------------- ----- ----    - -- -          \r\n          |               -         - -- --------- -- -- -  -----  ---  -- -       - -  -   \r\n          |             -  - -  - - - -    ---- --- --- --- --  --  ---     - -            -\r\n          |  -   -  - -               - --     --   --   -   -    --   --       --          \r\n          |                       - -     -  --    -    --   -- -  -     --        -  -     \r\n          |                  -  -         - -   - - -  -- -   -     --      -           -   \r\n          |            -  -            - -      --     --     -      -       - -           -\r\n          |     -   -                -         -       -      -       -          -          \r\n          |-                    -  -          -       -        -       -           -        \r\n          |                  -              -         -        -        -            -      \r\n          |               -               -          -         -         -                  \r\n -2.00e+00|___________-_________________-___________-_____________________-____________-____\r\n           -2.00e+00                            0.00e+00                            2.00e+00\r\n\"\"\"\r\n\r\nprint(random.gauss(0, 1, [2, 3, 4]))\r\nprint(random.rand([2, 3, 4]))\r\nprint(random.randint(0, 9, [2, 3, 4]))\r\nprint(random.uniform(0, 9, [2, 3, 4]))\r\n\r\n\"\"\"\r\n[[[0.4847228830212484, 0.21191111573518406, 0.5373857787327614, -0.8093138913140422], [-0.7011162169944548, -0.9912705888373583, 0.7186439322555127, -0.2274581920158257], [1.3914572485772865, 0.7075164958432888, 0.7592813432866642, 0.035360908326509295]], [[-0.015103635361811502, 0.2260790803894067, -0.0479692229109478, -0.18601862902940933], [1.2607730202510887, -1.3885699518983425, 0.6662735518373, 0.31158223208478136], [-0.6163262301739749, 0.45335816472937096, -0.3099931166324452, 0.33766139602898054]]]\r\n[[[0.9908387599158799, 0.21201658430651493, 0.9437298457409969, 0.05879243950811597], [0.5031188669965702, 0.4848728511699505, 0.01579620200535503, 0.45437774795329555], [0.25978581761821773, 0.8368846886830117, 0.305587930563909, 0.25483467458201103]], [[0.9555384002609535, 0.4956682731616203, 0.2577575820069856, 0.42012684095465547], [0.7236210201681477, 0.20749387839946765, 0.41822591597474046, 0.3049876771209371], [0.5482188347875343, 0.9725069497850535, 0.0009136275067901378, 0.6566715689489501]]]\r\n[[[0, 8, 3, 1], [0, 8, 6, 8], [6, 0, 4, 6]], [[3, 0, 3, 5], [7, 1, 4, 4], [6, 5, 6, 7]]]\r\n[[[0.5283612378290214, 7.262524059790431, 7.772626276903747, 5.054257930459873], [4.346895596478688, 4.245631516109806, 1.4873778244242264, 0.21200334989526515], [5.560169637820303, 7.944316673669743, 1.142117411431089, 4.0928173218897665]], [[1.5511337413790796, 3.9871009562400013, 6.859553134546862, 6.823314677935608], [6.528323813176091, 2.1511397393620104, 2.207094001588672, 7.546888086887966], [8.716377217873646, 5.754127816115938, 8.725415670845436, 8.033482314572911]]]\r\n\"\"\"\r\n\r\nprint(regs.lin_reg(list(range(5)), [2, 4, 6, 7, 8]))\r\nprint(regs.par_reg(list(range(5)), [2, 4, 6, 7, 8]))\r\nprint(regs.poly_reg(list(range(5)), [2, 4, 6, 7, 8], 4))\r\n\r\n\"\"\"\r\n[1.5, 2.4000000000000004]\r\n[-0.21428571428571563, 2.3571428571428625, 1.971428571428569]\r\n[0.08333333333320592, -0.666666666666571, 1.4166666666628345, 1.1666666666688208, 1.9999999999999258]\r\n\"\"\"\r\n\r\nprint(tools.classify([1, 2.3, 4 + 5j, \"string\", list, True, 3.14, False, tuple, tools]))\r\nprint(tools.dedup([\"Python\", 6, \"NumPy\", int, \"PyPyNum\", 9, \"pypynum\", \"NumPy\", 6, True]))\r\nprint(tools.frange(0, 3, 0.4))\r\nprint(tools.linspace(0, 2.8, 8))\r\n\r\n\"\"\"\r\n{<class 'int'>: [1], <class 'float'>: [2.3, 3.14], <class 'complex'>: [(4+5j)], <class 'str'>: ['string'], <class 'type'>: [<class 'list'>, <class 'tuple'>], <class 'bool'>: [True, False], <class 'module'>: [<module 'pypynum.tools' from 'C:\\\\Users\\\\Administrator\\\\PycharmProjects\\\\pythonProject\\\\pypynum\\\\tools.py'>]}\r\n['Python', 6, 'NumPy', <class 'int'>, 'PyPyNum', 9, 'pypynum', True]\r\n[0.0, 0.4, 0.8, 1.2000000000000002, 1.6, 2.0, 2.4000000000000004, 2.8000000000000003, 3.2]\r\n[0.0, 0.39999999999999997, 0.7999999999999999, 1.2, 1.5999999999999999, 1.9999999999999998, 2.4, 2.8]\r\n\"\"\"\r\n\r\n# Tip:\r\n# The test has been successfully passed and ended.\r\n# These tests are only part of the functionality of this package.\r\n# More features need to be explored and tried by yourself!\r\n```\r\n",
    "bugtrack_url": null,
    "license": "GNU AFFERO GENERAL PUBLIC LICENSE Version 3, 19 November 2007  Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/> Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.  Preamble  The GNU Affero General Public License is a free, copyleft license for software and other kinds of works, specifically designed to ensure cooperation with the community in the case of network server software.  The licenses for most software and other practical works are designed to take away your freedom to share and change the works.  By contrast, our General Public Licenses are intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users.  When we speak of free software, we are referring to freedom, not price.  Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things.  Developers that use our General Public Licenses protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License which gives you legal permission to copy, distribute and/or modify the software.  A secondary benefit of defending all users' freedom is that improvements made in alternate versions of the program, if they receive widespread use, become available for other developers to incorporate.  Many developers of free software are heartened and encouraged by the resulting cooperation.  However, in the case of software used on network servers, this result may fail to come about. The GNU General Public License permits making a modified version and letting the public access it on a server without ever releasing its source code to the public.  The GNU Affero General Public License is designed specifically to ensure that, in such cases, the modified source code becomes available to the community.  It requires the operator of a network server to provide the source code of the modified version running there to the users of that server.  Therefore, public use of a modified version, on a publicly accessible server, gives the public access to the source code of the modified version.  An older license, called the Affero General Public License and published by Affero, was designed to accomplish similar goals.  This is a different license, not a version of the Affero GPL, but Affero has released a new version of the Affero GPL which permits relicensing under this license.  The precise terms and conditions for copying, distribution and modification follow.  TERMS AND CONDITIONS  0. Definitions.  \"This License\" refers to version 3 of the GNU Affero General Public License.  \"Copyright\" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.  \"The Program\" refers to any copyrightable work licensed under this License.  Each licensee is addressed as \"you\".  \"Licensees\" and \"recipients\" may be individuals or organizations.  To \"modify\" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy.  The resulting work is called a \"modified version\" of the earlier work or a work \"based on\" the earlier work.  A \"covered work\" means either the unmodified Program or a work based on the Program.  To \"propagate\" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy.  Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well.  To \"convey\" a work means any kind of propagation that enables other parties to make or receive copies.  Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.  An interactive user interface displays \"Appropriate Legal Notices\" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License.  If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion.  1. Source Code.  The \"source code\" for a work means the preferred form of the work for making modifications to it.  \"Object code\" means any non-source form of a work.  A \"Standard Interface\" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language.  The \"System Libraries\" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form.  A \"Major Component\", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it.  The \"Corresponding Source\" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities.  However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work.  For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work.  The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source.  The Corresponding Source for a work in source code form is that same work.  2. Basic Permissions.  All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met.  This License explicitly affirms your unlimited permission to run the unmodified Program.  The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work.  This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.  You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force.  You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright.  Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you.  Conveying under any other circumstances is permitted solely under the conditions stated below.  Sublicensing is not allowed; section 10 makes it unnecessary.  3. Protecting Users' Legal Rights From Anti-Circumvention Law.  No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.  When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures.  4. Conveying Verbatim Copies.  You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program.  You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee.  5. Conveying Modified Source Versions.  You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions:  a) The work must carry prominent notices stating that you modified it, and giving a relevant date.  b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7.  This requirement modifies the requirement in section 4 to \"keep intact all notices\".  c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy.  This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged.  This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it.  d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so.  A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an \"aggregate\" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit.  Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate.  6. Conveying Non-Source Forms.  You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways:  a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange.  b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge.  c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source.  This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b.  d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge.  You need not require recipients to copy the Corresponding Source along with the object code.  If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source.  Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements.  e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.  A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work.  A \"User Product\" is either (1) a \"consumer product\", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling.  In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage.  For a particular product received by a particular user, \"normally used\" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product.  A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product.  \"Installation Information\" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source.  The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made.  If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information.  But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM).  The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed.  Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network.  Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying.  7. Additional Terms.  \"Additional permissions\" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law.  If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions.  When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it.  (Additional permissions may be written to require their own removal in certain cases when you modify the work.)  You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission.  Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms:  a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or  b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or  c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or  d) Limiting the use for publicity purposes of names of licensors or authors of the material; or  e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or  f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors.  All other non-permissive additional terms are considered \"further restrictions\" within the meaning of section 10.  If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term.  If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying.  If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms.  Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way.  8. Termination.  You may not propagate or modify a covered work except as expressly provided under this License.  Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11).  However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.  Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.  Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License.  If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10.  9. Acceptance Not Required for Having Copies.  You are not required to accept this License in order to receive or run a copy of the Program.  Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance.  However, nothing other than this License grants you permission to propagate or modify any covered work.  These actions infringe copyright if you do not accept this License.  Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so.  10. Automatic Licensing of Downstream Recipients.  Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License.  You are not responsible for enforcing compliance by third parties with this License.  An \"entity transaction\" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations.  If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.  You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License.  For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.  11. Patents.  A \"contributor\" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based.  The work thus licensed is called the contributor's \"contributor version\".  A contributor's \"essential patent claims\" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version.  For purposes of this definition, \"control\" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License.  Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version.  In the following three paragraphs, a \"patent license\" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement).  To \"grant\" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party.  If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients.  \"Knowingly relying\" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid.  If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it.  A patent license is \"discriminatory\" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License.  You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.  Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law.  12. No Surrender of Others' Freedom.  If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License.  If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all.  For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program.  13. Remote Network Interaction; Use with the GNU General Public License.  Notwithstanding any other provision of this License, if you modify the Program, your modified version must prominently offer all users interacting with it remotely through a computer network (if your version supports such interaction) an opportunity to receive the Corresponding Source of your version by providing access to the Corresponding Source from a network server at no charge, through some standard or customary means of facilitating copying of software.  This Corresponding Source shall include the Corresponding Source for any work covered by version 3 of the GNU General Public License that is incorporated pursuant to the following paragraph.  Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU General Public License into a single combined work, and to convey the resulting work.  The terms of this License will continue to apply to the part which is the covered work, but the work with which it is combined will remain governed by version 3 of the GNU General Public License.  14. Revised Versions of this License.  The Free Software Foundation may publish revised and/or new versions of the GNU Affero General Public License from time to time.  Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.  Each version is given a distinguishing version number.  If the Program specifies that a certain numbered version of the GNU Affero General Public License \"or any later version\" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation.  If the Program does not specify a version number of the GNU Affero General Public License, you may choose any version ever published by the Free Software Foundation.  If the Program specifies that a proxy can decide which future versions of the GNU Affero General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program.  Later license versions may give you additional or different permissions.  However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version.  15. Disclaimer of Warranty.  THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM \"AS IS\" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.  16. Limitation of Liability.  IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.  17. Interpretation of Sections 15 and 16.  If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee.  END OF TERMS AND CONDITIONS  How to Apply These Terms to Your New Programs  If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.  To do so, attach the following notices to the program.  It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the \"copyright\" line and a pointer to where the full notice is found.  <one line to give the program's name and a brief idea of what it does.> Copyright (C) <year>  <name of author>  This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.  This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Affero General Public License for more details.  You should have received a copy of the GNU Affero General Public License along with this program.  If not, see <https://www.gnu.org/licenses/>.  Also add information on how to contact you by electronic and paper mail.  If your software can interact with users remotely through a computer network, you should also make sure that it provides a way for users to get its source.  For example, if your program is a web application, its interface could display a \"Source\" link that leads users to an archive of the code.  There are many ways you could offer source, and different solutions will be better for different programs; see section 13 for the specific requirements.  You should also get your employer (if you work as a programmer) or school, if any, to sign a \"copyright disclaimer\" for the program, if necessary. For more information on this, and how to apply and follow the GNU AGPL, see <https://www.gnu.org/licenses/>. ",
    "summary": "PyPyNum is a Python library for math & science computations, covering algebra, calculus, stats, with data structures like matrices, vectors, tensors. It offers numerical tools, programs, and supports computational ops, functions, processing, simulation, & visualization in data science & ML, crucial for research, engineering, & data processing.",
    "version": "1.17.0",
    "project_urls": {
        "Homepage": "https://github.com/PythonSJL/PyPyNum"
    },
    "split_keywords": [
        "math",
        " \u6570\u5b66",
        " mathematics",
        " \u6570\u5b66\u8ba1\u7b97",
        " numerical",
        " \u6570\u503c",
        " computation",
        " \u8ba1\u7b97",
        " scientific",
        " \u79d1\u5b66",
        " algebra",
        " \u4ee3\u6570",
        " calculus",
        " \u5fae\u79ef\u5206",
        " statistics",
        " \u7edf\u8ba1",
        " linear-algebra",
        " \u7ebf\u6027\u4ee3\u6570",
        " optimization",
        " \u4f18\u5316",
        " numerical-analysis",
        " \u6570\u503c\u5206\u6790",
        " matrix",
        " \u77e9\u9635",
        " vector",
        " \u5411\u91cf",
        " tensor",
        " \u5f20\u91cf",
        " numerics",
        " \u6570\u503c\u8ba1\u7b97",
        " library",
        " \u5e93",
        " tools",
        " \u5de5\u5177",
        " utils",
        " \u5b9e\u7528\u7a0b\u5e8f",
        " algorithms",
        " \u7b97\u6cd5",
        " software",
        " \u8f6f\u4ef6",
        " package",
        " \u5305",
        " methods",
        " \u65b9\u6cd5",
        " data-science",
        " \u6570\u636e\u79d1\u5b66",
        " machine-learning",
        " \u673a\u5668\u5b66\u4e60",
        " computational",
        " \u8ba1\u7b97\u7684",
        " operations",
        " \u64cd\u4f5c",
        " functions",
        " \u51fd\u6570",
        " processing",
        " \u5904\u7406",
        " programming",
        " \u7f16\u7a0b",
        " simulation",
        " \u4eff\u771f",
        " visualization",
        " \u53ef\u89c6\u5316",
        " physics",
        " \u7269\u7406"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d6d2dd6423a71efbbaabf5471d2b8ecac990c90d415fb1ba08d68077780325f3",
                "md5": "b4b4bdab0e463f8bc9572d2b5ce32985",
                "sha256": "85e787d1bff8e936e341e9d30a7508bd1c16fb335879a2346849ede7c65edd56"
            },
            "downloads": -1,
            "filename": "PyPyNum-1.17.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b4b4bdab0e463f8bc9572d2b5ce32985",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.4",
            "size": 167697,
            "upload_time": "2024-11-22T08:02:02",
            "upload_time_iso_8601": "2024-11-22T08:02:02.565047Z",
            "url": "https://files.pythonhosted.org/packages/d6/d2/dd6423a71efbbaabf5471d2b8ecac990c90d415fb1ba08d68077780325f3/PyPyNum-1.17.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8f5208daad4ac14b9e093f0f86c44a4c9223ff834fb22e4b3f644a84a8a07fda",
                "md5": "b2aa591cfa6b073fc5dd6a26f520082a",
                "sha256": "4c0c5cbe101f9c3f9e3c0afc234e9238383f0f0529e703a0e26942a00812bcd9"
            },
            "downloads": -1,
            "filename": "pypynum-1.17.0.tar.gz",
            "has_sig": false,
            "md5_digest": "b2aa591cfa6b073fc5dd6a26f520082a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.4",
            "size": 189596,
            "upload_time": "2024-11-22T08:02:05",
            "upload_time_iso_8601": "2024-11-22T08:02:05.035490Z",
            "url": "https://files.pythonhosted.org/packages/8f/52/08daad4ac14b9e093f0f86c44a4c9223ff834fb22e4b3f644a84a8a07fda/pypynum-1.17.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-22 08:02:05",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "PythonSJL",
    "github_project": "PyPyNum",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "pypynum"
}
        
Elapsed time: 0.46516s