Name | PyTokenCounter JSON |
Version |
1.6.4
JSON |
| download |
home_page | None |
Summary | A Python library for tokenizing text and counting tokens using various encoding schemes. |
upload_time | 2025-02-03 23:06:07 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.11 |
license | GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/> Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. "This License" refers to version 3 of the GNU General Public License. "Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. "The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations. To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work. A "covered work" means either the unmodified Program or a work based on the Program. To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a) The work must carry prominent notices stating that you modified it, and giving a relevant date. b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices". c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. "Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. "Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d) Limiting the use for publicity purposes of names of licensors or authors of the material; or e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version". A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. <one line to give the program's name and a brief idea of what it does.> Copyright (C) <year> <name of author> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <https://www.gnu.org/licenses/>. Also add information on how to contact you by electronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode: <program> Copyright (C) <year> <name of author> This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see <https://www.gnu.org/licenses/>. The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read <https://www.gnu.org/licenses/why-not-lgpl.html>. |
keywords |
tokenization
encoding
tiktoken
openai
gpt
language-model
llm
transformers
natural-language-processing
nlp
machine-learning
ai
text-processing
language-models
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# PyTokenCounter
PyTokenCounter is a Python library designed to simplify text tokenization and token counting. It supports various encoding schemes, with a focus on those used by **Large Language Models (LLMs)**, particularly those developed by OpenAI. Leveraging the `tiktoken` library for efficient processing, PyTokenCounter facilitates seamless integration with LLM workflows. This project is based on the [`tiktoken` library](https://github.com/openai/tiktoken) created by [OpenAI](https://github.com/openai/tiktoken).
## Table of Contents
- [Background](#background)
- [Install](#install)
- [Usage](#usage)
- [CLI](#cli)
- [API](#api)
- [Utility Functions](#utility-functions)
- [String Tokenization and Counting](#string-tokenization-and-counting)
- [File and Directory Tokenization and Counting](#file-and-directory-tokenization-and-counting)
- [Token Mapping](#token-mapping)
- [Ignored Files](#ignored-files)
- [Maintainers](#maintainers)
- [Acknowledgements](#acknowledgements)
- [Contributing](#contributing)
- [License](#license)
## Background
The development of PyTokenCounter was driven by the need for a user-friendly and efficient way to handle text tokenization in Python, particularly for applications that interact with **Large Language Models (LLMs)** like OpenAI's language models. **LLMs process text by breaking it down into tokens**, which are the fundamental units of input and output for these models. Tokenization, the process of converting text into a sequence of tokens, is a fundamental step in natural language processing and essential for optimizing interactions with LLMs.
Understanding and managing token counts is crucial when working with LLMs because it directly impacts aspects such as **API usage costs**, **prompt length limitations**, and **response generation**. PyTokenCounter addresses these needs by providing an intuitive interface for tokenizing strings, files, and directories, as well as counting the number of tokens based on different encoding schemes. With support for various OpenAI models and their associated encodings, PyTokenCounter is versatile enough to be used in a wide range of applications involving LLMs, such as prompt engineering, cost estimation, and monitoring usage.
## Install
Install PyTokenCounter using `pip`:
```bash
pip install PyTokenCounter
```
## Usage
Here are a few examples to get you started with PyTokenCounter, especially in the context of **LLMs**:
```python
from pathlib import Path
from collections import OrderedDict
import PyTokenCounter as tc
import tiktoken
# Count tokens in a string for an LLM model
numTokens = tc.GetNumTokenStr(
string="This is a test string.", model="gpt-4o"
)
print(f"Number of tokens: {numTokens}")
# Count tokens in a file intended for LLM processing
filePath = Path("./TestFile.txt")
numTokensFile = tc.GetNumTokenFile(filePath=filePath, model="gpt-4o")
print(f"Number of tokens in file: {numTokensFile}")
# Count tokens in a directory of documents for batch processing with an LLM
dirPath = Path("./TestDir")
numTokensDir = tc.GetNumTokenDir(dirPath=dirPath, model="gpt-4o", recursive=True)
print(f"Number of tokens in directory: {numTokensDir}")
# Get the encoding for a specific LLM model
encoding = tc.GetEncoding(model="gpt-4o")
# Tokenize a string using a specific encoding for LLM input
tokens = tc.TokenizeStr(string="This is another test.", encoding=encoding)
print(f"Token IDs: {tokens}")
# Map tokens to their decoded strings
mappedTokens = tc.MapTokens(tokens=tokens, encoding=encoding)
print(f"Mapped tokens: {mappedTokens}")
# Count tokens in a string using the default model
numTokens = tc.GetNumTokenStr(string="This is a test string.")
print(f"Number of tokens: {numTokens}")
# Count tokens in a file using the default model
filePath = Path("./TestFile.txt")
numTokensFile = tc.GetNumTokenFile(filePath=filePath)
print(f"Number of tokens in file: {numTokensFile}")
# Tokenize a string using the default model
tokens = tc.TokenizeStr(string="This is another test.")
print(f"Token IDs: {tokens}")
# Tokenize a string and map tokens to strings using the default model
mappedTokensResult = tc.TokenizeStr(string="This is another test.", mapTokens=True)
print(f"Mapped tokens result: {mappedTokensResult}")
# Map tokens to their decoded strings using the default model
mappedTokens = tc.MapTokens(tokens=tokens)
print(f"Mapped tokens: {mappedTokens}")
# Tokenize a directory and get mapped tokens with counts
dirPath = Path("./TestDir")
mappedDirTokens = tc.TokenizeDir(dirPath=dirPath, recursive=True, mapTokens=True)
print(f"Mapped directory tokens: {mappedDirTokens}")
# Count tokens in a directory and get mapped counts
mappedDirCounts = tc.GetNumTokenDir(dirPath=dirPath, recursive=True, mapTokens=True)
print(f"Mapped directory counts: {mappedDirCounts}")
```
### CLI
PyTokenCounter can also be used as a command-line tool. You can use either the `tokencount` entry point or its alias `tc`. Below are examples for both:
```bash
# Tokenize a string for an LLM
tokencount tokenize-str "Hello, world!" --model gpt-4o
tc tokenize-str "Hello, world!" --model gpt-4o
# Tokenize a string using the default model
tokencount tokenize-str "Hello, world!"
tc tokenize-str "Hello, world!"
# Tokenize a file for an LLM
tokencount tokenize-file TestFile.txt --model gpt-4o
tc tokenize-file TestFile.txt --model gpt-4o
# Tokenize a file using the default model
tokencount tokenize-file TestFile.txt
tc tokenize-file TestFile.txt
# Tokenize multiple files for an LLM
tokencount tokenize-files TestFile1.txt TestFile2.txt --model gpt-4o
tc tokenize-files TestFile1.txt TestFile2.txt --model gpt-4o
# Tokenize multiple files using the default model
tokencount tokenize-files TestFile1.txt TestFile2.txt
tc tokenize-files TestFile1.txt TestFile2.txt
# Tokenize a directory of files for an LLM (non-recursive)
tokencount tokenize-files MyDirectory --model gpt-4o --no-recursive
tc tokenize-files MyDirectory --model gpt-4o --no-recursive
# Tokenize a directory of files using the default model (non-recursive)
tokencount tokenize-files MyDirectory --no-recursive
tc tokenize-files MyDirectory --no-recursive
# Tokenize a directory (alternative command) for an LLM (non-recursive)
tokencount tokenize-dir MyDirectory --model gpt-4o --no-recursive
tc tokenize-dir MyDirectory --model gpt-4o --no-recursive
# Tokenize a directory (alternative command) using the default model (non-recursive)
tokencount tokenize-dir MyDirectory --no-recursive
tc tokenize-dir MyDirectory --no-recursive
# Count tokens in a string for an LLM
tokencount count-str "This is a test string." --model gpt-4o
tc count-str "This is a test string." --model gpt-4o
# Count tokens in a string using the default model
tokencount count-str "This is a test string."
tc count-str "This is a test string."
# Count tokens in a file for an LLM
tokencount count-file TestFile.txt --model gpt-4o
tc count-file TestFile.txt --model gpt-4o
# Count tokens in a file using the default model
tokencount count-file TestFile.txt
tc count-file TestFile.txt
# Count tokens in multiple files for an LLM
tokencount count-files TestFile1.txt TestFile2.txt --model gpt-4o
tc count-files TestFile1.txt TestFile2.txt --model gpt-4o
# Count tokens in multiple files using the default model
tokencount count-files TestFile1.txt TestFile2.txt
tc count-files TestFile1.txt TestFile2.txt
# Count tokens in a directory for an LLM (non-recursive)
tokencount count-files TestDir --model gpt-4o --no-recursive
tc count-files TestDir --model gpt-4o --no-recursive
# Count tokens in a directory using the default model (non-recursive)
tokencount count-files TestDir --no-recursive
tc count-files TestDir --no-recursive
# Count tokens in a directory (alternative command) for an LLM (non-recursive)
tokencount count-dir TestDir --model gpt-4o --no-recursive
tc count-dir TestDir --model gpt-4o --no-recursive
# Count tokens in a directory (alternative command) using the default model (non-recursive)
tokencount count-dir TestDir --no-recursive
tc count-dir TestDir --no-recursive
# Get the model associated with an encoding
tokencount get-model cl100k_base
tc get-model cl100k_base
# Get the encoding associated with a model
tokencount get-encoding gpt-4o
tc get-encoding gpt-4o
# Map tokens to strings for an LLM
tokencount map-tokens 123,456,789 --model gpt-4o
tc map-tokens 123,456,789 --model gpt-4o
# Map tokens to strings using the default model
tokencount map-tokens 123,456,789
tc map-tokens 123,456,789
# Tokenize a string and output mapped tokens
tokencount tokenize-str "Hello, mapped world!" --model gpt-4o -M
# Tokenize a file and output mapped tokens
tokencount tokenize-file TestFile.txt --model gpt-4o -M
# Tokenize a directory and output mapped tokens
tokencount tokenize-dir MyDirectory --model gpt-4o -M
# Count tokens in a directory and output mapped counts
tokencount count-dir MyDirectory --model gpt-4o -M
# Include binary files
tokencount tokenize-files MyDirectory --model gpt-4o -b
tc tokenize-files MyDirectory --model gpt-4o -b
# Include hidden files and directories
tokencount tokenize-files MyDirectory --model gpt-4o -H
tc tokenize-files MyDirectory --model gpt-4o -H
# Combine both options: include binary files and include hidden files
tokencount tokenize-files MyDirectory --model gpt-4o -b -H
tc tokenize-files MyDirectory --model gpt-4o -b -H
```
**CLI Usage Details:**
The `tokencount` (or `tc`) CLI provides several subcommands for tokenizing and counting tokens in strings, files, and directories, tailored for use with **LLMs**.
**Subcommands:**
- `tokenize-str`: Tokenizes a provided string.
- `tokencount tokenize-str "Your string here" --model gpt-4o`
- `tc tokenize-str "Your string here" --model gpt-4o`
- `tokenize-file`: Tokenizes the contents of a file.
- `tokencount tokenize-file Path/To/Your/File.txt --model gpt-4o`
- `tc tokenize-file Path/To/Your/File.txt --model gpt-4o`
- `tokenize-files`: Tokenizes the contents of multiple specified files or all files within a directory.
- `tokencount tokenize-files Path/To/Your/File1.txt Path/To/Your/File2.txt --model gpt-4o`
- `tc tokenize-files Path/To/Your/File1.txt Path/To/Your/File2.txt --model gpt-4o`
- `tokencount tokenize-files Path/To/Your/Directory --model gpt-4o --no-recursive`
- `tc tokenize-files Path/To/Your/Directory --model gpt-4o --no-recursive`
- `tokenize-dir`: Tokenizes all files within a specified directory into lists of token IDs.
- `tokencount tokenize-dir Path/To/Your/Directory --model gpt-4o --no-recursive`
- `tc tokenize-dir Path/To/Your/Directory --model gpt-4o --no-recursive`
- `count-str`: Counts the number of tokens in a provided string.
- `tokencount count-str "Your string here" --model gpt-4o`
- `tc count-str "Your string here" --model gpt-4o`
- `count-file`: Counts the number of tokens in a file.
- `tokencount count-file Path/To/Your/File.txt --model gpt-4o`
- `tc count-file Path/To/Your/File.txt --model gpt-4o`
- `count-files`: Counts the number of tokens in multiple specified files or all files within a directory.
- `tokencount count-files Path/To/Your/File1.txt Path/To/Your/File2.txt --model gpt-4o`
- `tc count-files Path/To/Your/File1.txt Path/To/Your/File2.txt --model gpt-4o`
- `tokencount count-files Path/To/Your/Directory --model gpt-4o --no-recursive`
- `tc count-files Path/To/Your/Directory --model gpt-4o --no-recursive`
- `count-dir`: Counts the total number of tokens across all files in a specified directory.
- `tokencount count-dir Path/To/Your/Directory --model gpt-4o --no-recursive`
- `tc count-dir Path/To/Your/Directory --model gpt-4o --no-recursive`
- `get-model`: Retrieves the model name from the provided encoding.
- `tokencount get-model cl100k_base`
- `tc get-model cl100k_base`
- `get-encoding`: Retrieves the encoding name from the provided model.
- `tokencount get-encoding gpt-4o`
- `tc get-encoding gpt-4o`
- `map-tokens`: Maps a list of token integers to their decoded strings.
- `tokencount map-tokens 123,456,789 --model gpt-4o`
- `tc map-tokens 123,456,789 --model gpt-4o`
**Options:**
- `-m`, `--model`: Specifies the model to use for encoding. **Default: `gpt-4o`**
- `-e`, `--encoding`: Specifies the encoding to use directly.
- `-nr`, `--no-recursive`: When used with `tokenize-files`, `tokenize-dir`, `count-files`, or `count-dir` for a directory, it prevents the tool from processing subdirectories recursively.
- `-q`, `--quiet`: When used with any of the above commands, it prevents the tool from showing progress bars and minimizes output.
- `-M`, `--mapTokens`: When specified, the output will be in a mapped (nested) format. For tokenize commands, this outputs a nested `OrderedDict` mapping decoded strings to their token IDs. For count commands, this outputs a nested `OrderedDict` with token counts, including keys such as `"numTokens"` and `"tokens"`.
- `-o`, `--output`: When used with any of the commands, specifies an output JSON file to save the results to.
- `-b`, `--include-binary`: Include binary files in processing. (Default: binary files are excluded.)
- `-H`, `--include-hidden`: Include hidden files and directories. (Default: hidden files and directories are skipped.)
## API
Here's a detailed look at the PyTokenCounter API, designed to integrate seamlessly with **LLM** workflows:
### Utility Functions
#### `GetModelMappings() -> dict`
Retrieves the mappings between models and their corresponding encodings, essential for selecting the correct tokenization strategy for different **LLMs**.
**Returns:**
- `dict`: A dictionary where keys are model names and values are their corresponding encodings.
**Example:**
```python
import PyTokenCounter as tc
modelMappings = tc.GetModelMappings()
print(modelMappings)
```
---
#### `GetValidModels() -> list[str]`
Returns a list of valid model names supported by PyTokenCounter, primarily focusing on **LLMs**.
**Returns:**
- `list[str]`: A list of valid model names.
**Example:**
```python
import PyTokenCounter as tc
validModels = tc.GetValidModels()
print(validModels)
```
---
#### `GetValidEncodings() -> list[str]`
Returns a list of valid encoding names, ensuring compatibility with various **LLMs**.
**Returns:**
- `list[str]`: A list of valid encoding names.
**Example:**
```python
import PyTokenCounter as tc
validEncodings = tc.GetValidEncodings()
print(validEncodings)
```
---
#### `GetModelForEncoding(encoding: tiktoken.Encoding) -> list[str] | str`
Determines the model name(s) associated with a given encoding, facilitating the selection of appropriate **LLMs**.
**Parameters:**
- `encoding` (`tiktoken.Encoding`): The encoding to get the model for.
**Returns:**
- `str`: The model name or a list of models corresponding to the given encoding.
**Raises:**
- `ValueError`: If the encoding name is not valid.
**Example:**
```python
import PyTokenCounter as tc
import tiktoken
encoding = tiktoken.get_encoding('cl100k_base')
model = tc.GetModelForEncoding(encoding=encoding)
print(model)
```
---
#### `GetModelForEncodingName(encodingName: str) -> str`
Determines the model name associated with a given encoding name, facilitating the selection of appropriate **LLMs**.
**Parameters:**
- `encodingName` (`str`): The name of the encoding.
**Returns:**
- `str`: The model name or a list of models corresponding to the given encoding.
**Raises:**
- `ValueError`: If the encoding name is not valid.
**Example:**
```python
import PyTokenCounter as tc
modelName = tc.GetModelForEncodingName(encodingName="cl100k_base")
print(modelName)
```
---
#### `GetEncodingForModel(modelName: str) -> tiktoken.Encoding`
Retrieves the encoding associated with a given model name, ensuring accurate tokenization for the selected **LLM**.
**Parameters:**
- `modelName` (`str`): The name of the model.
**Returns:**
- `tiktoken.Encoding`: The encoding corresponding to the given model name.
**Raises:**
- `ValueError`: If the model name is not valid.
**Example:**
```python
import PyTokenCounter as tc
encoding = tc.GetEncodingForModel(modelName="gpt-4o")
print(encoding)
```
---
#### `GetEncodingNameForModel(modelName: str) -> str`
Retrieves the encoding name associated with a given model name, ensuring accurate tokenization for the selected **LLM**.
**Parameters:**
- `modelName` (`str`): The name of the model.
**Returns:**
- `str`: The encoding name corresponding to the given model name.
**Raises:**
- `ValueError`: If the model name is not valid.
**Example:**
```python
import PyTokenCounter as tc
encodingName = tc.GetEncodingNameForModel(modelName="gpt-4o")
print(encodingName)
```
---
#### `GetEncoding(model: str | None = None, encodingName: str | None = None) -> tiktoken.Encoding`
Obtains the `tiktoken` encoding based on the specified model or encoding name, tailored for **LLM** usage. If neither `model` nor `encodingName` is provided, it defaults to the encoding associated with the `"gpt-4o"` model.
**Parameters:**
- `model` (`str`, optional): The name of the model.
- `encodingName` (`str`, optional): The name of the encoding.
**Returns:**
- `tiktoken.Encoding`: The `tiktoken` encoding object.
**Raises:**
- `ValueError`: If neither model nor encoding is provided, or if the provided model or encoding is invalid.
**Example:**
```python
import PyTokenCounter as tc
import tiktoken
encoding = tc.GetEncoding(model="gpt-4o")
print(encoding)
encoding = tc.GetEncoding(encodingName="p50k_base")
print(encoding)
encoding = tc.GetEncoding()
print(encoding)
```
---
### String Tokenization and Counting
#### `TokenizeStr(string: str, model: str | None = "gpt-4o", encodingName: str | None = None, encoding: tiktoken.Encoding | None = None, quiet: bool = False, mapTokens: bool = False) -> list[int] | OrderedDict[str, int]`
Tokenizes a string into a list of token IDs or a mapping of decoded strings to tokens, preparing text for input into an **LLM**.
**Parameters:**
- `string` (`str`): The string to tokenize.
- `model` (`str`, optional): The name of the model. **Default: `"gpt-4o"`**
- `encodingName` (`str`, optional): The name of the encoding.
- `encoding` (`tiktoken.Encoding`, optional): A `tiktoken` encoding object.
- `quiet` (`bool`, optional): If `True`, suppresses progress updates.
- `mapTokens` (`bool`, optional): If `True`, outputs an `OrderedDict` mapping decoded strings to their token IDs. **Default: `False`**
**Returns:**
- `list[int]`: A list of token IDs if `mapTokens` is `False`.
- `OrderedDict[str, int]`: An `OrderedDict` mapping decoded strings to token IDs if `mapTokens` is `True`.
**Raises:**
- `ValueError`: If the provided model or encoding is invalid.
**Example:**
```python
import PyTokenCounter as tc
from collections import OrderedDict
tokens = tc.TokenizeStr(string="Hail to the Victors!", model="gpt-4o")
print(tokens)
tokens = tc.TokenizeStr(string="Hail to the Victors!")
print(tokens)
import tiktoken
encoding = tiktoken.get_encoding("cl100k_base")
mappedTokens = tc.TokenizeStr(string="2024 National Champions", encoding=encoding, mapTokens=True)
print(mappedTokens)
mappedTokens = tc.TokenizeStr(string="2024 National Champions", mapTokens=True)
print(mappedTokens)
```
---
#### `GetNumTokenStr(string: str, model: str | None = "gpt-4o", encodingName: str | None = None, encoding: tiktoken.Encoding | None = None, quiet: bool = False, mapTokens: bool = False) -> int | OrderedDict[str, int]`
Counts the number of tokens in a string.
**Parameters:**
- `string` (`str`): The string to count tokens in.
- `model` (`str`, optional): The name of the model. **Default: `"gpt-4o"`**
- `encodingName` (`str`, optional): The name of the encoding.
- `encoding` (`tiktoken.Encoding`, optional): A `tiktoken.Encoding` object to use for tokenization.
- `quiet` (`bool`, optional): If `True`, suppresses progress updates.
- `mapTokens` (`bool`, optional): If `True`, outputs an `OrderedDict` mapping decoded strings to token counts (which are always 1 for strings). Primarily for consistency with other functions. **Default: `False`**
**Returns:**
- `int`: The number of tokens in the string if `mapTokens` is `False`.
- `OrderedDict[str, int]`: An `OrderedDict` mapping decoded strings to token counts if `mapTokens` is `True`.
**Raises:**
- `ValueError`: If the provided model or encoding is invalid.
**Example:**
```python
import PyTokenCounter as tc
from collections import OrderedDict
import tiktoken
numTokens = tc.GetNumTokenStr(string="Hail to the Victors!", model="gpt-4o")
print(numTokens)
numTokens = tc.GetNumTokenStr(string="Hail to the Victors!")
print(numTokens)
numTokens = tc.GetNumTokenStr(string="Corum 4 Heisman", encoding=tiktoken.get_encoding("cl100k_base"))
print(numTokens)
numTokens = tc.GetNumTokenStr(string="Corum 4 Heisman")
print(numTokens)
mappedCounts = tc.GetNumTokenStr(string="Mapped count example", mapTokens=True)
print(mappedCounts)
```
---
### File and Directory Tokenization and Counting
#### `TokenizeFile(filePath: Path | str, model: str | None = "gpt-4o", encodingName: str | None = None, encoding: tiktoken.Encoding | None = None, quiet: bool = False, mapTokens: bool = False) -> list[int] | OrderedDict[str, OrderedDict[str, int | list[int]]]`
Tokenizes the contents of a file into a list of token IDs or a nested `OrderedDict` structure.
**Parameters:**
- `filePath` (`Path | str`): The path to the file to tokenize.
- `model` (`str`, optional): The name of the model to use for encoding. **Default: `"gpt-4o"`**
- `encodingName` (`str`, optional): The name of the encoding to use.
- `encoding` (`tiktoken.Encoding`, optional): An existing `tiktoken.Encoding` object to use for tokenization.
- `quiet` (`bool`, optional): If `True`, suppresses progress updates.
- `mapTokens` (`bool`, optional): If `True`, outputs an `OrderedDict` where the key is the filename and the value is another `OrderedDict` with keys `"tokens"` (the list of token IDs) and `"numTokens"` (the total token count). If `False`, returns just the list of token IDs. **Default: `False`**
**Returns:**
- `list[int]`: A list of token IDs representing the tokenized file contents if `mapTokens` is `False`.
- `OrderedDict[str, OrderedDict[str, int | list[int]]]`: An `OrderedDict` as described above if `mapTokens` is `True`.
**Raises:**
- `TypeError`: If the types of input parameters are incorrect.
- `ValueError`: If the provided model or encoding is invalid.
- `UnsupportedEncodingError`: If the file encoding is not supported.
- `FileNotFoundError`: If the file does not exist.
**Example:**
```python
from pathlib import Path
import PyTokenCounter as tc
from collections import OrderedDict
import tiktoken
filePath = Path("TestFile1.txt")
tokens = tc.TokenizeFile(filePath=filePath, model="gpt-4o")
print(tokens)
filePath = Path("TestFile1.txt")
mappedTokensFile = tc.TokenizeFile(filePath=filePath, model="gpt-4o", mapTokens=True)
print(mappedTokensFile)
filePath = Path("TestFile1.txt")
tokens = tc.TokenizeFile(filePath=filePath)
print(tokens)
import tiktoken
encoding = tiktoken.get_encoding("p50k_base")
filePath = Path("TestFile2.txt")
mappedTokensFileEncoding = tc.TokenizeFile(filePath=filePath, encoding=encoding, mapTokens=True)
print(mappedTokensFileEncoding)
filePath = Path("TestFile2.txt")
mappedTokensFileDefault = tc.TokenizeFile(filePath=filePath, mapTokens=True)
print(mappedTokensFileDefault)
```
---
#### `GetNumTokenFile(filePath: Path | str, model: str | None = "gpt-4o", encodingName: str | None = None, encoding: tiktoken.Encoding | None = None, quiet: bool = False, mapTokens: bool = False) -> int | OrderedDict[str, int]`
Counts the number of tokens in a file based on the specified model or encoding.
**Parameters:**
- `filePath` (`Path | str`): The path to the file to count tokens for.
- `model` (`str`, optional): The name of the model to use for encoding. **Default: `"gpt-4o"`**
- `encodingName` (`str`, optional): The name of the encoding to use.
- `encoding` (`tiktoken.Encoding`, optional): An existing `tiktoken.Encoding` object to use for tokenization.
- `quiet` (`bool`, optional): If `True`, suppresses progress updates.
- `mapTokens` (`bool`, optional): If `True`, outputs an `OrderedDict` where the key is the filename and the value is the token count. If `False`, returns just the token count as an integer. **Default: `False`**
**Returns:**
- `int`: The number of tokens in the file if `mapTokens` is `False`.
- `OrderedDict[str, int]`: An `OrderedDict` mapping the filename to its token count if `mapTokens` is `True`.
**Raises:**
- `TypeError`: If the types of `filePath`, `model`, `encodingName`, or `encoding` are incorrect.
- `ValueError`: If the provided `model` or `encodingName` is invalid, or if there is a mismatch between the model and encoding name, or between the provided encoding and the derived encoding.
- `UnsupportedEncodingError`: If the file's encoding cannot be determined.
- `FileNotFoundError`: If the file does not exist.
**Example:**
```python
import PyTokenCounter as tc
from pathlib import Path
from collections import OrderedDict
filePath = Path("TestFile1.txt")
numTokens = tc.GetNumTokenFile(filePath=filePath, model="gpt-4o")
print(numTokens)
filePath = Path("TestFile1.txt")
mappedNumTokensFile = tc.GetNumTokenFile(filePath=filePath, model="gpt-4o", mapTokens=True)
print(mappedNumTokensFile)
filePath = Path("TestFile1.txt")
numTokens = tc.GetNumTokenFile(filePath=filePath)
print(numTokens)
filePath = Path("TestFile2.txt")
numTokens = tc.GetNumTokenFile(filePath=filePath, model="gpt-4o")
print(numTokens)
filePath = Path("TestFile2.txt")
numTokens = tc.GetNumTokenFile(filePath=filePath)
print(numTokens)
filePath = Path("TestFile2.txt")
mappedNumTokensFileDefault = tc.GetNumTokenFile(filePath=filePath, mapTokens=True)
print(mappedNumTokensFileDefault)
```
---
#### `TokenizeFiles(inputPath: Path | str | list[Path | str], model: str | None = "gpt-4o", encodingName: str | None = None, encoding: tiktoken.Encoding | None = None, recursive: bool = True, quiet: bool = False, exitOnListError: bool = True, mapTokens: bool = False, excludeBinary: bool = True, includeHidden: bool = False) -> list[int] | OrderedDict[str, list[int] | OrderedDict]`
Tokenizes multiple files or all files within a directory into lists of token IDs or a nested `OrderedDict` structure.
**Parameters:**
- `inputPath` (`Path | str | list[Path | str]`): The path to a file or directory, or a list of file paths to tokenize.
- `model` (`str`, optional): The name of the model to use for encoding. **Default: `"gpt-4o"`**
- `encodingName` (`str`, optional): The name of the encoding to use.
- `encoding` (`tiktoken.Encoding`, optional): An existing `tiktoken.Encoding` object to use for tokenization.
- `recursive` (`bool`, optional): If `inputPath` is a directory, whether to tokenize files in subdirectories recursively. **Default: `True`**
- `quiet` (`bool`, optional): If `True`, suppresses progress updates. **Default: `False`**
- `exitOnListError` (`bool`, optional): If `True`, stop processing the list upon encountering an error. If `False`, skip files that cause errors. **Default: `True`**
- `mapTokens` (`bool`, optional): If `True`, outputs a nested `OrderedDict` structure. For files, the value is an `OrderedDict` with keys `"tokens"` (the list of token IDs) and `"numTokens"` (the total token count). For directories, the output is wrapped with `"tokens"` and `"numTokens"` keys. If `False`, returns a list of token IDs for a single file, or a dictionary mapping filenames to token lists for multiple files. **Default: `False`**
- `excludeBinary` (`bool`, optional): Excludes any binary files by skipping over them. **Default: `True`**
- `includeHidden` (`bool`, optional): Skips over hidden files and directories, including subdirectories and files of a hidden directory. **Default: `False`**
**Returns:**
- `list[int] | OrderedDict[str, list[int] | OrderedDict]`:
- If `inputPath` is a file:
- If `mapTokens` is `False`, returns a list of token IDs for that file.
- If `mapTokens` is `True`, returns an `OrderedDict` with the structure described in the `mapTokens` parameter description.
- If `inputPath` is a list of files, returns a dictionary where each key is the file name and the value depends on `mapTokens`:
- If `mapTokens` is `False`, the value is the list of token IDs for that file.
- If `mapTokens` is `True`, the value is an `OrderedDict` with the structure described in the `mapTokens` parameter description, wrapped under the key `"tokens"`, and the total token count under the key `"numTokens"` at the top level.
- If `inputPath` is a directory:
- If `recursive` is `True`, returns a nested `OrderedDict` where each key is a file or subdirectory name with corresponding token lists or sub-dictionaries. If `mapTokens` is `True`, the directory output is wrapped with `"tokens"` and `"numTokens"` keys.
- If `recursive` is `False`, returns a dictionary with file names as keys and their token lists as values. If `mapTokens` is `True`, the directory output is wrapped with `"tokens"` and `"numTokens"` keys.
**Raises:**
- `TypeError`: If the types of `inputPath`, `model`, `encodingName`, `encoding`, or `recursive` are incorrect.
- `ValueError`: If any of the provided file paths in a list are not files, or if a provided directory path is not a directory.
- `UnsupportedEncodingError`: If any of the files to be tokenized have an unsupported encoding.
- `RuntimeError`: If the provided `inputPath` is neither a file, a directory, nor a list.
**Example:**
```python
from PyTokenCounter import TokenizeFiles
from pathlib import Path
from collections import OrderedDict
import tiktoken
inputFiles = [
Path("TestFile1.txt"),
Path("TestFile2.txt"),
]
tokens = tc.TokenizeFiles(inputPath=inputFiles, model="gpt-4o")
print(tokens)
mappedTokensFiles = tc.TokenizeFiles(inputPath=inputFiles, model="gpt-4o", mapTokens=True)
print(mappedTokensFiles)
tokens = tc.TokenizeFiles(inputPath=inputFiles)
print(tokens)
# Tokenizing multiple files using the default model
mappedTokensFilesDefault = tc.TokenizeFiles(inputPath=inputFiles, mapTokens=True)
print(mappedTokensFilesDefault)
import tiktoken
encoding = tiktoken.get_encoding('p50k_base')
dirPath = Path("TestDir")
mappedDirTokensNonRecursiveEncoding = tc.TokenizeFiles(inputPath=dirPath, encoding=encoding, recursive=False, mapTokens=True)
print(mappedDirTokensNonRecursiveEncoding)
mappedDirTokensRecursiveModel = tc.TokenizeFiles(inputPath=dirPath, model="gpt-4o", recursive=True, mapTokens=True)
print(mappedDirTokensRecursiveModel)
mappedDirTokensRecursiveDefault = tc.TokenizeFiles(inputPath=dirPath, recursive=True, mapTokens=True)
print(mappedDirTokensRecursiveDefault)
# Tokenizing a directory using the default model
mappedDirTokensDefaultModel = tc.TokenizeFiles(inputPath=dirPath, recursive=True, mapTokens=True)
print(mappedDirTokensDefaultModel)
```
---
#### `GetNumTokenFiles(inputPath: Path | str | list[Path | str], model: str | None = "gpt-4o", encodingName: str | None = None, encoding: tiktoken.Encoding | None = None, recursive: bool = True, quiet: bool = False, exitOnListError: bool = True, excludeBinary: bool = True, includeHidden: bool = False, mapTokens: bool = False) -> int | OrderedDict[str, int | OrderedDict]`
Counts the number of tokens across multiple files or in all files within a directory, or returns a nested `OrderedDict` structure with counts.
**Parameters:**
- `inputPath` (`Path | str | list[Path | str]`): The path to a file or directory, or a list of file paths to count tokens for.
- `model` (`str`, optional): The name of the model to use for encoding. **Default: `"gpt-4o"`**
- `encodingName` (`str`, optional): The name of the encoding to use.
- `encoding` (`tiktoken.Encoding`, optional): An existing `tiktoken.Encoding` object to use for tokenization.
- `recursive` (`bool`, optional): If `inputPath` is a directory, whether to count tokens in files in subdirectories recursively. **Default: `True`**
- `quiet` (`bool`, optional): If `True`, suppresses progress updates. **Default: `False`**
- `exitOnListError` (`bool`, optional): If `True`, stop processing the list upon encountering an error. If `False`, skip files that cause errors. **Default: `True`**
- `excludeBinary` (`bool`, optional): Excludes any binary files by skipping over them. **Default: `True`**
- `includeHidden` (`bool`, optional): Skips over hidden files and directories, including subdirectories and files of a hidden directory. **Default: `False`**
- `mapTokens` (`bool`, optional): If `True`, outputs a nested `OrderedDict` structure. For files, the value is the token count. For directories, the output is wrapped with `"tokens"` and `"numTokens"` keys, where `"tokens"` contains the nested counts. If `False`, returns the total token count as an integer. **Default: `False`**
**Returns:**
- `int`: The total number of tokens in the specified files or directory if `mapTokens` is `False`.
- `OrderedDict[str, int | OrderedDict]`: An `OrderedDict` mirroring the directory structure with token counts if `mapTokens` is `True`.
**Raises:**
- `TypeError`: If the types of `inputPath`, `model`, `encodingName`, `encoding`, or `recursive` are incorrect.
- `ValueError`: If any of the provided file paths in a list are not files, or if a provided directory path is not a directory, or if the provided model or encoding is invalid.
- `UnsupportedEncodingError`: If any of the files to be tokenized have an unsupported encoding.
- `RuntimeError`: If the provided `inputPath` is neither a file, a directory, nor a list.
**Example:**
```python
import PyTokenCounter as tc
from pathlib import Path
from collections import OrderedDict
import tiktoken
inputFiles = [
Path("TestFile1.txt"),
Path("TestFile2.txt"),
]
numTokens = tc.GetNumTokenFiles(inputPath=inputFiles, model='gpt-4o')
print(numTokens)
mappedNumTokensFiles = tc.GetNumTokenFiles(inputPath=inputFiles, model='gpt-4o', mapTokens=True)
print(mappedNumTokensFiles)
numTokens = tc.GetNumTokenFiles(inputPath=inputFiles)
print(numTokens)
# Counting tokens in multiple files using the default model
mappedNumTokensFilesDefault = tc.GetNumTokenFiles(inputPath=inputFiles, mapTokens=True)
print(mappedNumTokensFilesDefault)
import tiktoken
encoding = tiktoken.get_encoding('p50k_base')
dirPath = Path("TestDir")
mappedNumTokensDirNonRecursiveEncoding = tc.GetNumTokenFiles(inputPath=dirPath, encoding=encoding, recursive=False, mapTokens=True)
print(mappedNumTokensDirNonRecursiveEncoding)
numTokensDirRecursiveModel = tc.GetNumTokenFiles(inputPath=dirPath, model='gpt-4o', recursive=True)
print(numTokensDirRecursiveModel)
mappedNumTokensDirRecursiveModel = tc.GetNumTokenFiles(inputPath=dirPath, model='gpt-4o', recursive=True, mapTokens=True)
print(mappedNumTokensDirRecursiveModel)
# Counting tokens in a directory using the default model
mappedNumTokensDirRecursiveDefault = tc.GetNumTokenFiles(inputPath=dirPath, recursive=True, mapTokens=True)
print(mappedNumTokensDirRecursiveDefault)
```
---
#### `TokenizeDir(dirPath: Path | str, model: str | None = "gpt-4o", encodingName: str | None = None, encoding: tiktoken.Encoding | None = None, recursive: bool = True, quiet: bool = False, mapTokens: bool = False, excludeBinary: bool = True, includeHidden: bool = False) -> OrderedDict[str, list[int] | OrderedDict]`
Tokenizes all files within a directory into a nested `OrderedDict` structure or lists of token IDs.
**Parameters:**
- `dirPath` (`Path | str`): The path to the directory to tokenize.
- `model` (`str`, optional): The name of the model to use for encoding. **Default: `"gpt-4o"`**
- `encodingName` (`str`, optional): The name of the encoding to use.
- `encoding` (`tiktoken.Encoding`, optional): An existing `tiktoken.Encoding` object to use for tokenization.
- `recursive` (`bool`, optional): Whether to tokenize files in subdirectories recursively. **Default: `True`**
- `quiet` (`bool`, optional): If `True`, suppresses progress updates. **Default: `False`**
- `mapTokens` (`bool`, optional): If `True`, outputs a nested `OrderedDict` where each key is a file or subdirectory name. For files, the value is an `OrderedDict` with keys `"tokens"` (the list of token IDs) and `"numTokens"` (the total token count). For directories, the output is recursively structured. If `False`, returns a nested `OrderedDict` of token lists without the `"numTokens"` wrapper. **Default: `False`**
- `excludeBinary` (`bool`, optional): Excludes any binary files by skipping over them. **Default: `True`**
- `includeHidden` (`bool`, optional): Skips over hidden files and directories, including subdirectories and files of a hidden directory. **Default: `False`**
**Returns:**
- `OrderedDict[str, list[int] | OrderedDict]`: A nested `OrderedDict` where each key is a file or subdirectory name. If `mapTokens` is `True`, directory entries include `"numTokens"` and `"tokens"` keys.
**Raises:**
- `TypeError`: If the types of input parameters are incorrect.
- `ValueError`: If the provided path is not a directory or if the model or encoding is invalid.
- `UnsupportedEncodingError`: If the file's encoding cannot be determined.
- `FileNotFoundError`: If the directory does not exist.
**Example:**
```python
import PyTokenCounter as tc
from pathlib import Path
from collections import OrderedDict
dirPath = Path("TestDir")
tokenizedDir = tc.TokenizeDir(dirPath=dirPath, model="gpt-4o", recursive=True)
print(tokenizedDir)
mappedTokenizedDir = tc.TokenizeDir(dirPath=dirPath, model="gpt-4o", recursive=True, mapTokens=True)
print(mappedTokenizedDir)
tokenizedDir = tc.TokenizeDir(dirPath=dirPath, recursive=True)
print(tokenizedDir)
# Tokenizing a directory using the default model
mappedTokenizedDirDefault = tc.TokenizeDir(dirPath=dirPath, recursive=True, mapTokens=True)
print(mappedTokenizedDirDefault)
tokenizedDirNonRecursiveModel = tc.TokenizeDir(dirPath=dirPath, model="gpt-4o", recursive=False)
print(tokenizedDirNonRecursiveModel)
mappedTokenizedDirNonRecursiveModel = tc.TokenizeDir(dirPath=dirPath, model="gpt-4o", recursive=False, mapTokens=True)
print(mappedTokenizedDirNonRecursiveModel)
tokenizedDirNonRecursiveDefault = tc.TokenizeDir(dirPath=dirPath, recursive=False)
print(tokenizedDirNonRecursiveDefault)
mappedTokenizedDirRecursiveModel = tc.TokenizeDir(dirPath=dirPath, model="gpt-4o", recursive=True, mapTokens=True)
print(mappedTokenizedDirRecursiveModel)
# Tokenizing a directory using the default model with token mapping
mappedTokenizedDirRecursiveDefaultModel = tc.TokenizeDir(dirPath=dirPath, recursive=True, mapTokens=True)
print(mappedTokenizedDirRecursiveDefaultModel)
```
---
#### `GetNumTokenDir(dirPath: Path | str, model: str | None = "gpt-4o", encodingName: str | None = None, encoding: tiktoken.Encoding | None = None, recursive: bool = True, quiet: bool = False, excludeBinary: bool = True, includeHidden: bool = False, mapTokens: bool = False) -> int | OrderedDict[str, int | OrderedDict]`
Counts the number of tokens in all files within a directory, or returns a nested `OrderedDict` structure with counts.
**Parameters:**
- `dirPath` (`Path | str`): The path to the directory to count tokens for.
- `model` (`str`, optional): The name of the model to use for encoding. **Default: `"gpt-4o"`**
- `encodingName` (`str`, optional): The name of the encoding to use.
- `encoding` (`tiktoken.Encoding`, optional): An existing `tiktoken.Encoding` object to use for tokenization.
- `recursive` (`bool`, optional): Whether to count tokens in subdirectories recursively. **Default: `True`**
- `quiet` (`bool`, optional): If `True`, suppresses progress updates. **Default: `False`**
- `excludeBinary` (`bool`, optional): Excludes any binary files by skipping over them. **Default: `True`**
- `includeHidden` (`bool`, optional): Skips over hidden files and directories, including subdirectories and files of a hidden directory. **Default: `False`**
- `mapTokens` (`bool`, optional): If `True`, outputs a nested `OrderedDict` structure mirroring the directory structure. For files, the value is the token count. For directories, the output is wrapped with `"tokens"` and `"numTokens"` keys, where `"tokens"` contains the nested counts. If `False`, returns the total token count as an integer. **Default: `False`**
**Returns:**
- `int`: The total number of tokens in the directory if `mapTokens` is `False`.
- `OrderedDict[str, int | OrderedDict]`: An `OrderedDict` mirroring the directory structure with token counts if `mapTokens` is `True`.
**Raises:**
- `TypeError`: If the types of input parameters are incorrect.
- `ValueError`: If the provided path is not a directory or if the model or encoding is invalid.
- `UnsupportedEncodingError`: If the file's encoding cannot be determined.
- `FileNotFoundError`: If the directory does not exist.
**Example:**
```python
import PyTokenCounter as tc
from pathlib import Path
from collections import OrderedDict
dirPath = Path("TestDir")
numTokensDir = tc.GetNumTokenDir(dirPath=dirPath, model="gpt-4o", recursive=True)
print(numTokensDir)
mappedNumTokensDir = tc.GetNumTokenDir(dirPath=dirPath, model="gpt-4o", recursive=True, mapTokens=True)
print(mappedNumTokensDir)
# Counting tokens in a directory using the default model
mappedNumTokensDirDefault = tc.GetNumTokenDir(dirPath=dirPath, recursive=True, mapTokens=True)
print(mappedNumTokensDirDefault)
numTokensDirNonRecursiveModel = tc.GetNumTokenDir(dirPath=dirPath, model="gpt-4o", recursive=False)
print(numTokensDirNonRecursiveModel)
mappedNumTokensDirNonRecursiveModel = tc.GetNumTokenDir(dirPath=dirPath, model="gpt-4o", recursive=False, mapTokens=True)
print(mappedNumTokensDirNonRecursiveModel)
numTokensDirNonRecursiveDefault = tc.GetNumTokenDir(dirPath=dirPath, recursive=False)
print(numTokensDirNonRecursiveDefault)
```
---
### Token Mapping
#### `MapTokens(tokens: list[int] | OrderedDict[str, list[int] | OrderedDict], model: str | None = "gpt-4o", encodingName: str | None = None, encoding: tiktoken.Encoding | None = None) -> OrderedDict[str, str] | OrderedDict[str, OrderedDict[str, str] | OrderedDict]`
Maps tokens to their corresponding decoded strings based on a specified encoding.
**Parameters:**
- `tokens` (`list[int] | OrderedDict[str, list[int] | OrderedDict]`): The tokens to be mapped. This can either be:
- A list of integer tokens to decode.
- An `OrderedDict` with string keys and values that are either:
- A list of integer tokens.
- Another nested `OrderedDict` with the same structure.
- `model` (`str`, optional): The model name to use for determining the encoding. **Default: `"gpt-4o"`**
- `encodingName` (`str`, optional): The name of the encoding to use.
- `encoding` (`tiktoken.Encoding`, optional): The encoding object to use.
**Returns:**
- `OrderedDict[str, str] | OrderedDict[str, OrderedDict[str, str] | OrderedDict]`: A mapping of decoded strings to their corresponding integer tokens. If `tokens` is a nested structure, the result will maintain the same nested structure with decoded mappings.
**Raises:**
- `TypeError`: If `tokens` is not a list of integers or an `OrderedDict` of strings mapped to tokens.
- `ValueError`: If an invalid model or encoding name is provided, or if the encoding does not match the model or encoding name.
- `KeyError`: If a token is not in the given encoding's vocabulary.
- `RuntimeError`: If an unexpected error occurs while validating the encoding.
**Example:**
```python
import PyTokenCounter as tc
import tiktoken
from collections import OrderedDict
encoding = tiktoken.get_encoding("cl100k_base")
tokens = [123,456,789]
mapped = tc.MapTokens(tokens=tokens, encoding=encoding)
print(mapped)
mapped = tc.MapTokens(tokens=tokens, encoding=encoding)
print(mapped)
# Mapping tokens using the default model
mapped = tc.MapTokens(tokens=tokens)
print(mapped)
```
---
## Ignored Files
When the functions are set to exclude binary files (default behavior), the following file extensions are ignored:
| Category | Extensions |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **Image formats** | `.png`, `.jpg`, `.jpeg`, `.gif`, `.bmp`, `.pbm`, `.webp`, `.avif`, `.tiff`, `.tif`, `.ico`, `.svgz` |
| **Video formats** | `.mp4`, `.mkv`, `.mov`, `.avi`, `.wmv`, `.flv`, `.webm`, `.m4v`, `.mpeg`, `.mpg`, `.3gp`, `.3g2` |
| **Audio formats** | `.mp3`, `.wav`, `.flac`, `.ogg`, `.aac`, `.m4a`, `.wma`, `.aiff`, `.ape`, `.opus` |
| **Compressed archives** | `.zip`, `.rar`, `.7z`, `.tar`, `.gz`, `.bz2`, `.xz`, `.lz`, `.zst`, `.cab`, `.deb`, `.rpm`, `.pkg` |
| **Disk images** | `.iso`, `.dmg`, `.img`, `.vhd`, `.vmdk` |
| **Executables & Libraries** | `.exe`, `.msi`, `.bat`, `.dll`, `.so`, `.bin`, `.o`, `.a`, `.dylib` |
| **Fonts** | `.ttf`, `.otf`, `.woff`, `.woff2`, `.eot` |
| **Documents** | `.pdf`, `.ps`, `.eps` |
| **Design & Graphics** | `.psd`, `.ai`, `.indd`, `.sketch` |
| **3D & CAD files** | `.blend`, `.stl`, `.step`, `.iges`, `.fbx`, `.glb`, `.gltf`, `.3ds`, `.obj`, `.cad` |
| **Virtual Machines & Firmware** | `.qcow2`, `.vdi`, `.vhdx`, `.rom`, `.bin`, `.img` |
| **Miscellaneous binaries** | `.dat`, `.pak`, `.sav`, `.nes`, `.gba`, `.nds`, `.iso`, `.jar`, `.class`, `.wasm` |
Along with ignoring the extensions in the exclude list to quickly bypass known files that cannot be read, the code also catches decoding errors and skips files when `excludeBinary` is `True`. This approach ensures all unreadable files are handled efficiently, combining fast extension-based checks with robust decoding error handling.
---
## Maintainers
- [Kaden Gruizenga](https://github.com/kgruiz)
## Acknowledgements
- This project is based on the `tiktoken` library created by [OpenAI](https://github.com/openai/tiktoken).
## Contributing
Contributions are welcome! Feel free to [open an issue](https://github.com/kgruiz/PyTokenCounter/issues/new) or submit a pull request.
## License
This project is licensed under the GNU General Public License v3.0. See the [LICENSE](LICENSE) file for more details.
Raw data
{
"_id": null,
"home_page": null,
"name": "PyTokenCounter",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.11",
"maintainer_email": null,
"keywords": "tokenization, encoding, tiktoken, openai, gpt, language-model, llm, transformers, natural-language-processing, nlp, machine-learning, ai, text-processing, language-models",
"author": null,
"author_email": "Kaden Gruizenga <kgruiz@umich.edu>",
"download_url": "https://files.pythonhosted.org/packages/2f/c1/7ab84ab5d4863b3221ad89461fe32c171844578f21efd3e87c847c14e58d/pytokencounter-1.6.4.tar.gz",
"platform": null,
"description": "# PyTokenCounter\n\nPyTokenCounter is a Python library designed to simplify text tokenization and token counting. It supports various encoding schemes, with a focus on those used by **Large Language Models (LLMs)**, particularly those developed by OpenAI. Leveraging the `tiktoken` library for efficient processing, PyTokenCounter facilitates seamless integration with LLM workflows. This project is based on the [`tiktoken` library](https://github.com/openai/tiktoken) created by [OpenAI](https://github.com/openai/tiktoken).\n\n## Table of Contents\n\n- [Background](#background)\n- [Install](#install)\n- [Usage](#usage)\n - [CLI](#cli)\n- [API](#api)\n - [Utility Functions](#utility-functions)\n - [String Tokenization and Counting](#string-tokenization-and-counting)\n - [File and Directory Tokenization and Counting](#file-and-directory-tokenization-and-counting)\n - [Token Mapping](#token-mapping)\n- [Ignored Files](#ignored-files)\n- [Maintainers](#maintainers)\n- [Acknowledgements](#acknowledgements)\n- [Contributing](#contributing)\n- [License](#license)\n\n## Background\n\nThe development of PyTokenCounter was driven by the need for a user-friendly and efficient way to handle text tokenization in Python, particularly for applications that interact with **Large Language Models (LLMs)** like OpenAI's language models. **LLMs process text by breaking it down into tokens**, which are the fundamental units of input and output for these models. Tokenization, the process of converting text into a sequence of tokens, is a fundamental step in natural language processing and essential for optimizing interactions with LLMs.\n\nUnderstanding and managing token counts is crucial when working with LLMs because it directly impacts aspects such as **API usage costs**, **prompt length limitations**, and **response generation**. PyTokenCounter addresses these needs by providing an intuitive interface for tokenizing strings, files, and directories, as well as counting the number of tokens based on different encoding schemes. With support for various OpenAI models and their associated encodings, PyTokenCounter is versatile enough to be used in a wide range of applications involving LLMs, such as prompt engineering, cost estimation, and monitoring usage.\n\n## Install\n\nInstall PyTokenCounter using `pip`:\n\n```bash\npip install PyTokenCounter\n```\n\n## Usage\n\nHere are a few examples to get you started with PyTokenCounter, especially in the context of **LLMs**:\n\n```python\nfrom pathlib import Path\nfrom collections import OrderedDict\n\nimport PyTokenCounter as tc\nimport tiktoken\n\n# Count tokens in a string for an LLM model\nnumTokens = tc.GetNumTokenStr(\n string=\"This is a test string.\", model=\"gpt-4o\"\n)\nprint(f\"Number of tokens: {numTokens}\")\n\n# Count tokens in a file intended for LLM processing\nfilePath = Path(\"./TestFile.txt\")\nnumTokensFile = tc.GetNumTokenFile(filePath=filePath, model=\"gpt-4o\")\nprint(f\"Number of tokens in file: {numTokensFile}\")\n\n# Count tokens in a directory of documents for batch processing with an LLM\ndirPath = Path(\"./TestDir\")\nnumTokensDir = tc.GetNumTokenDir(dirPath=dirPath, model=\"gpt-4o\", recursive=True)\nprint(f\"Number of tokens in directory: {numTokensDir}\")\n\n# Get the encoding for a specific LLM model\nencoding = tc.GetEncoding(model=\"gpt-4o\")\n\n# Tokenize a string using a specific encoding for LLM input\ntokens = tc.TokenizeStr(string=\"This is another test.\", encoding=encoding)\nprint(f\"Token IDs: {tokens}\")\n\n# Map tokens to their decoded strings\nmappedTokens = tc.MapTokens(tokens=tokens, encoding=encoding)\nprint(f\"Mapped tokens: {mappedTokens}\")\n\n# Count tokens in a string using the default model\nnumTokens = tc.GetNumTokenStr(string=\"This is a test string.\")\nprint(f\"Number of tokens: {numTokens}\")\n\n# Count tokens in a file using the default model\nfilePath = Path(\"./TestFile.txt\")\nnumTokensFile = tc.GetNumTokenFile(filePath=filePath)\nprint(f\"Number of tokens in file: {numTokensFile}\")\n\n# Tokenize a string using the default model\ntokens = tc.TokenizeStr(string=\"This is another test.\")\nprint(f\"Token IDs: {tokens}\")\n\n# Tokenize a string and map tokens to strings using the default model\nmappedTokensResult = tc.TokenizeStr(string=\"This is another test.\", mapTokens=True)\nprint(f\"Mapped tokens result: {mappedTokensResult}\")\n\n# Map tokens to their decoded strings using the default model\nmappedTokens = tc.MapTokens(tokens=tokens)\nprint(f\"Mapped tokens: {mappedTokens}\")\n\n# Tokenize a directory and get mapped tokens with counts\ndirPath = Path(\"./TestDir\")\nmappedDirTokens = tc.TokenizeDir(dirPath=dirPath, recursive=True, mapTokens=True)\nprint(f\"Mapped directory tokens: {mappedDirTokens}\")\n\n# Count tokens in a directory and get mapped counts\nmappedDirCounts = tc.GetNumTokenDir(dirPath=dirPath, recursive=True, mapTokens=True)\nprint(f\"Mapped directory counts: {mappedDirCounts}\")\n```\n\n### CLI\n\nPyTokenCounter can also be used as a command-line tool. You can use either the `tokencount` entry point or its alias `tc`. Below are examples for both:\n\n```bash\n# Tokenize a string for an LLM\ntokencount tokenize-str \"Hello, world!\" --model gpt-4o\ntc tokenize-str \"Hello, world!\" --model gpt-4o\n\n# Tokenize a string using the default model\ntokencount tokenize-str \"Hello, world!\"\ntc tokenize-str \"Hello, world!\"\n\n# Tokenize a file for an LLM\ntokencount tokenize-file TestFile.txt --model gpt-4o\ntc tokenize-file TestFile.txt --model gpt-4o\n\n# Tokenize a file using the default model\ntokencount tokenize-file TestFile.txt\ntc tokenize-file TestFile.txt\n\n# Tokenize multiple files for an LLM\ntokencount tokenize-files TestFile1.txt TestFile2.txt --model gpt-4o\ntc tokenize-files TestFile1.txt TestFile2.txt --model gpt-4o\n\n# Tokenize multiple files using the default model\ntokencount tokenize-files TestFile1.txt TestFile2.txt\ntc tokenize-files TestFile1.txt TestFile2.txt\n\n# Tokenize a directory of files for an LLM (non-recursive)\ntokencount tokenize-files MyDirectory --model gpt-4o --no-recursive\ntc tokenize-files MyDirectory --model gpt-4o --no-recursive\n\n# Tokenize a directory of files using the default model (non-recursive)\ntokencount tokenize-files MyDirectory --no-recursive\ntc tokenize-files MyDirectory --no-recursive\n\n# Tokenize a directory (alternative command) for an LLM (non-recursive)\ntokencount tokenize-dir MyDirectory --model gpt-4o --no-recursive\ntc tokenize-dir MyDirectory --model gpt-4o --no-recursive\n\n# Tokenize a directory (alternative command) using the default model (non-recursive)\ntokencount tokenize-dir MyDirectory --no-recursive\ntc tokenize-dir MyDirectory --no-recursive\n\n# Count tokens in a string for an LLM\ntokencount count-str \"This is a test string.\" --model gpt-4o\ntc count-str \"This is a test string.\" --model gpt-4o\n\n# Count tokens in a string using the default model\ntokencount count-str \"This is a test string.\"\ntc count-str \"This is a test string.\"\n\n# Count tokens in a file for an LLM\ntokencount count-file TestFile.txt --model gpt-4o\ntc count-file TestFile.txt --model gpt-4o\n\n# Count tokens in a file using the default model\ntokencount count-file TestFile.txt\ntc count-file TestFile.txt\n\n# Count tokens in multiple files for an LLM\ntokencount count-files TestFile1.txt TestFile2.txt --model gpt-4o\ntc count-files TestFile1.txt TestFile2.txt --model gpt-4o\n\n# Count tokens in multiple files using the default model\ntokencount count-files TestFile1.txt TestFile2.txt\ntc count-files TestFile1.txt TestFile2.txt\n\n# Count tokens in a directory for an LLM (non-recursive)\ntokencount count-files TestDir --model gpt-4o --no-recursive\ntc count-files TestDir --model gpt-4o --no-recursive\n\n# Count tokens in a directory using the default model (non-recursive)\ntokencount count-files TestDir --no-recursive\ntc count-files TestDir --no-recursive\n\n# Count tokens in a directory (alternative command) for an LLM (non-recursive)\ntokencount count-dir TestDir --model gpt-4o --no-recursive\ntc count-dir TestDir --model gpt-4o --no-recursive\n\n# Count tokens in a directory (alternative command) using the default model (non-recursive)\ntokencount count-dir TestDir --no-recursive\ntc count-dir TestDir --no-recursive\n\n# Get the model associated with an encoding\ntokencount get-model cl100k_base\ntc get-model cl100k_base\n\n# Get the encoding associated with a model\ntokencount get-encoding gpt-4o\ntc get-encoding gpt-4o\n\n# Map tokens to strings for an LLM\ntokencount map-tokens 123,456,789 --model gpt-4o\ntc map-tokens 123,456,789 --model gpt-4o\n\n# Map tokens to strings using the default model\ntokencount map-tokens 123,456,789\ntc map-tokens 123,456,789\n\n# Tokenize a string and output mapped tokens\ntokencount tokenize-str \"Hello, mapped world!\" --model gpt-4o -M\n\n# Tokenize a file and output mapped tokens\ntokencount tokenize-file TestFile.txt --model gpt-4o -M\n\n# Tokenize a directory and output mapped tokens\ntokencount tokenize-dir MyDirectory --model gpt-4o -M\n\n# Count tokens in a directory and output mapped counts\ntokencount count-dir MyDirectory --model gpt-4o -M\n\n# Include binary files\ntokencount tokenize-files MyDirectory --model gpt-4o -b\ntc tokenize-files MyDirectory --model gpt-4o -b\n\n# Include hidden files and directories\ntokencount tokenize-files MyDirectory --model gpt-4o -H\ntc tokenize-files MyDirectory --model gpt-4o -H\n\n# Combine both options: include binary files and include hidden files\ntokencount tokenize-files MyDirectory --model gpt-4o -b -H\ntc tokenize-files MyDirectory --model gpt-4o -b -H\n```\n\n**CLI Usage Details:**\n\nThe `tokencount` (or `tc`) CLI provides several subcommands for tokenizing and counting tokens in strings, files, and directories, tailored for use with **LLMs**.\n\n**Subcommands:**\n\n- `tokenize-str`: Tokenizes a provided string.\n - `tokencount tokenize-str \"Your string here\" --model gpt-4o`\n - `tc tokenize-str \"Your string here\" --model gpt-4o`\n- `tokenize-file`: Tokenizes the contents of a file.\n - `tokencount tokenize-file Path/To/Your/File.txt --model gpt-4o`\n - `tc tokenize-file Path/To/Your/File.txt --model gpt-4o`\n- `tokenize-files`: Tokenizes the contents of multiple specified files or all files within a directory.\n - `tokencount tokenize-files Path/To/Your/File1.txt Path/To/Your/File2.txt --model gpt-4o`\n - `tc tokenize-files Path/To/Your/File1.txt Path/To/Your/File2.txt --model gpt-4o`\n - `tokencount tokenize-files Path/To/Your/Directory --model gpt-4o --no-recursive`\n - `tc tokenize-files Path/To/Your/Directory --model gpt-4o --no-recursive`\n- `tokenize-dir`: Tokenizes all files within a specified directory into lists of token IDs.\n - `tokencount tokenize-dir Path/To/Your/Directory --model gpt-4o --no-recursive`\n - `tc tokenize-dir Path/To/Your/Directory --model gpt-4o --no-recursive`\n- `count-str`: Counts the number of tokens in a provided string.\n - `tokencount count-str \"Your string here\" --model gpt-4o`\n - `tc count-str \"Your string here\" --model gpt-4o`\n- `count-file`: Counts the number of tokens in a file.\n - `tokencount count-file Path/To/Your/File.txt --model gpt-4o`\n - `tc count-file Path/To/Your/File.txt --model gpt-4o`\n- `count-files`: Counts the number of tokens in multiple specified files or all files within a directory.\n - `tokencount count-files Path/To/Your/File1.txt Path/To/Your/File2.txt --model gpt-4o`\n - `tc count-files Path/To/Your/File1.txt Path/To/Your/File2.txt --model gpt-4o`\n - `tokencount count-files Path/To/Your/Directory --model gpt-4o --no-recursive`\n - `tc count-files Path/To/Your/Directory --model gpt-4o --no-recursive`\n- `count-dir`: Counts the total number of tokens across all files in a specified directory.\n - `tokencount count-dir Path/To/Your/Directory --model gpt-4o --no-recursive`\n - `tc count-dir Path/To/Your/Directory --model gpt-4o --no-recursive`\n- `get-model`: Retrieves the model name from the provided encoding.\n - `tokencount get-model cl100k_base`\n - `tc get-model cl100k_base`\n- `get-encoding`: Retrieves the encoding name from the provided model.\n - `tokencount get-encoding gpt-4o`\n - `tc get-encoding gpt-4o`\n- `map-tokens`: Maps a list of token integers to their decoded strings.\n - `tokencount map-tokens 123,456,789 --model gpt-4o`\n - `tc map-tokens 123,456,789 --model gpt-4o`\n\n**Options:**\n\n- `-m`, `--model`: Specifies the model to use for encoding. **Default: `gpt-4o`**\n- `-e`, `--encoding`: Specifies the encoding to use directly.\n- `-nr`, `--no-recursive`: When used with `tokenize-files`, `tokenize-dir`, `count-files`, or `count-dir` for a directory, it prevents the tool from processing subdirectories recursively.\n- `-q`, `--quiet`: When used with any of the above commands, it prevents the tool from showing progress bars and minimizes output.\n- `-M`, `--mapTokens`: When specified, the output will be in a mapped (nested) format. For tokenize commands, this outputs a nested `OrderedDict` mapping decoded strings to their token IDs. For count commands, this outputs a nested `OrderedDict` with token counts, including keys such as `\"numTokens\"` and `\"tokens\"`.\n- `-o`, `--output`: When used with any of the commands, specifies an output JSON file to save the results to.\n- `-b`, `--include-binary`: Include binary files in processing. (Default: binary files are excluded.)\n- `-H`, `--include-hidden`: Include hidden files and directories. (Default: hidden files and directories are skipped.)\n\n## API\n\nHere's a detailed look at the PyTokenCounter API, designed to integrate seamlessly with **LLM** workflows:\n\n### Utility Functions\n\n#### `GetModelMappings() -> dict`\n\nRetrieves the mappings between models and their corresponding encodings, essential for selecting the correct tokenization strategy for different **LLMs**.\n\n**Returns:**\n\n- `dict`: A dictionary where keys are model names and values are their corresponding encodings.\n\n**Example:**\n\n```python\nimport PyTokenCounter as tc\n\nmodelMappings = tc.GetModelMappings()\nprint(modelMappings)\n```\n\n---\n\n#### `GetValidModels() -> list[str]`\n\nReturns a list of valid model names supported by PyTokenCounter, primarily focusing on **LLMs**.\n\n**Returns:**\n\n- `list[str]`: A list of valid model names.\n\n**Example:**\n\n```python\nimport PyTokenCounter as tc\n\nvalidModels = tc.GetValidModels()\nprint(validModels)\n```\n\n---\n\n#### `GetValidEncodings() -> list[str]`\n\nReturns a list of valid encoding names, ensuring compatibility with various **LLMs**.\n\n**Returns:**\n\n- `list[str]`: A list of valid encoding names.\n\n**Example:**\n\n```python\nimport PyTokenCounter as tc\n\nvalidEncodings = tc.GetValidEncodings()\nprint(validEncodings)\n```\n\n---\n\n#### `GetModelForEncoding(encoding: tiktoken.Encoding) -> list[str] | str`\n\nDetermines the model name(s) associated with a given encoding, facilitating the selection of appropriate **LLMs**.\n\n**Parameters:**\n\n- `encoding` (`tiktoken.Encoding`): The encoding to get the model for.\n\n**Returns:**\n\n- `str`: The model name or a list of models corresponding to the given encoding.\n\n**Raises:**\n\n- `ValueError`: If the encoding name is not valid.\n\n**Example:**\n\n```python\nimport PyTokenCounter as tc\nimport tiktoken\n\nencoding = tiktoken.get_encoding('cl100k_base')\nmodel = tc.GetModelForEncoding(encoding=encoding)\nprint(model)\n```\n\n---\n\n#### `GetModelForEncodingName(encodingName: str) -> str`\n\nDetermines the model name associated with a given encoding name, facilitating the selection of appropriate **LLMs**.\n\n**Parameters:**\n\n- `encodingName` (`str`): The name of the encoding.\n\n**Returns:**\n\n- `str`: The model name or a list of models corresponding to the given encoding.\n\n**Raises:**\n\n- `ValueError`: If the encoding name is not valid.\n\n**Example:**\n\n```python\nimport PyTokenCounter as tc\n\nmodelName = tc.GetModelForEncodingName(encodingName=\"cl100k_base\")\nprint(modelName)\n```\n\n---\n\n#### `GetEncodingForModel(modelName: str) -> tiktoken.Encoding`\n\nRetrieves the encoding associated with a given model name, ensuring accurate tokenization for the selected **LLM**.\n\n**Parameters:**\n\n- `modelName` (`str`): The name of the model.\n\n**Returns:**\n\n- `tiktoken.Encoding`: The encoding corresponding to the given model name.\n\n**Raises:**\n\n- `ValueError`: If the model name is not valid.\n\n**Example:**\n\n```python\nimport PyTokenCounter as tc\n\nencoding = tc.GetEncodingForModel(modelName=\"gpt-4o\")\nprint(encoding)\n```\n\n---\n\n#### `GetEncodingNameForModel(modelName: str) -> str`\n\nRetrieves the encoding name associated with a given model name, ensuring accurate tokenization for the selected **LLM**.\n\n**Parameters:**\n\n- `modelName` (`str`): The name of the model.\n\n**Returns:**\n\n- `str`: The encoding name corresponding to the given model name.\n\n**Raises:**\n\n- `ValueError`: If the model name is not valid.\n\n**Example:**\n\n```python\nimport PyTokenCounter as tc\n\nencodingName = tc.GetEncodingNameForModel(modelName=\"gpt-4o\")\nprint(encodingName)\n```\n\n---\n\n#### `GetEncoding(model: str | None = None, encodingName: str | None = None) -> tiktoken.Encoding`\n\nObtains the `tiktoken` encoding based on the specified model or encoding name, tailored for **LLM** usage. If neither `model` nor `encodingName` is provided, it defaults to the encoding associated with the `\"gpt-4o\"` model.\n\n**Parameters:**\n\n- `model` (`str`, optional): The name of the model.\n- `encodingName` (`str`, optional): The name of the encoding.\n\n**Returns:**\n\n- `tiktoken.Encoding`: The `tiktoken` encoding object.\n\n**Raises:**\n\n- `ValueError`: If neither model nor encoding is provided, or if the provided model or encoding is invalid.\n\n**Example:**\n\n```python\nimport PyTokenCounter as tc\nimport tiktoken\n\nencoding = tc.GetEncoding(model=\"gpt-4o\")\nprint(encoding)\nencoding = tc.GetEncoding(encodingName=\"p50k_base\")\nprint(encoding)\nencoding = tc.GetEncoding()\nprint(encoding)\n```\n\n---\n\n### String Tokenization and Counting\n\n#### `TokenizeStr(string: str, model: str | None = \"gpt-4o\", encodingName: str | None = None, encoding: tiktoken.Encoding | None = None, quiet: bool = False, mapTokens: bool = False) -> list[int] | OrderedDict[str, int]`\n\nTokenizes a string into a list of token IDs or a mapping of decoded strings to tokens, preparing text for input into an **LLM**.\n\n**Parameters:**\n\n- `string` (`str`): The string to tokenize.\n- `model` (`str`, optional): The name of the model. **Default: `\"gpt-4o\"`**\n- `encodingName` (`str`, optional): The name of the encoding.\n- `encoding` (`tiktoken.Encoding`, optional): A `tiktoken` encoding object.\n- `quiet` (`bool`, optional): If `True`, suppresses progress updates.\n- `mapTokens` (`bool`, optional): If `True`, outputs an `OrderedDict` mapping decoded strings to their token IDs. **Default: `False`**\n\n**Returns:**\n\n- `list[int]`: A list of token IDs if `mapTokens` is `False`.\n- `OrderedDict[str, int]`: An `OrderedDict` mapping decoded strings to token IDs if `mapTokens` is `True`.\n\n**Raises:**\n\n- `ValueError`: If the provided model or encoding is invalid.\n\n**Example:**\n\n```python\nimport PyTokenCounter as tc\nfrom collections import OrderedDict\n\ntokens = tc.TokenizeStr(string=\"Hail to the Victors!\", model=\"gpt-4o\")\nprint(tokens)\n\ntokens = tc.TokenizeStr(string=\"Hail to the Victors!\")\nprint(tokens)\n\n\nimport tiktoken\nencoding = tiktoken.get_encoding(\"cl100k_base\")\nmappedTokens = tc.TokenizeStr(string=\"2024 National Champions\", encoding=encoding, mapTokens=True)\nprint(mappedTokens)\n\nmappedTokens = tc.TokenizeStr(string=\"2024 National Champions\", mapTokens=True)\nprint(mappedTokens)\n```\n\n---\n\n#### `GetNumTokenStr(string: str, model: str | None = \"gpt-4o\", encodingName: str | None = None, encoding: tiktoken.Encoding | None = None, quiet: bool = False, mapTokens: bool = False) -> int | OrderedDict[str, int]`\n\nCounts the number of tokens in a string.\n\n**Parameters:**\n\n- `string` (`str`): The string to count tokens in.\n- `model` (`str`, optional): The name of the model. **Default: `\"gpt-4o\"`**\n- `encodingName` (`str`, optional): The name of the encoding.\n- `encoding` (`tiktoken.Encoding`, optional): A `tiktoken.Encoding` object to use for tokenization.\n- `quiet` (`bool`, optional): If `True`, suppresses progress updates.\n- `mapTokens` (`bool`, optional): If `True`, outputs an `OrderedDict` mapping decoded strings to token counts (which are always 1 for strings). Primarily for consistency with other functions. **Default: `False`**\n\n**Returns:**\n\n- `int`: The number of tokens in the string if `mapTokens` is `False`.\n- `OrderedDict[str, int]`: An `OrderedDict` mapping decoded strings to token counts if `mapTokens` is `True`.\n\n**Raises:**\n\n- `ValueError`: If the provided model or encoding is invalid.\n\n**Example:**\n\n```python\nimport PyTokenCounter as tc\nfrom collections import OrderedDict\nimport tiktoken\n\nnumTokens = tc.GetNumTokenStr(string=\"Hail to the Victors!\", model=\"gpt-4o\")\nprint(numTokens)\n\nnumTokens = tc.GetNumTokenStr(string=\"Hail to the Victors!\")\nprint(numTokens)\n\nnumTokens = tc.GetNumTokenStr(string=\"Corum 4 Heisman\", encoding=tiktoken.get_encoding(\"cl100k_base\"))\nprint(numTokens)\n\nnumTokens = tc.GetNumTokenStr(string=\"Corum 4 Heisman\")\nprint(numTokens)\n\nmappedCounts = tc.GetNumTokenStr(string=\"Mapped count example\", mapTokens=True)\nprint(mappedCounts)\n```\n\n---\n\n### File and Directory Tokenization and Counting\n\n#### `TokenizeFile(filePath: Path | str, model: str | None = \"gpt-4o\", encodingName: str | None = None, encoding: tiktoken.Encoding | None = None, quiet: bool = False, mapTokens: bool = False) -> list[int] | OrderedDict[str, OrderedDict[str, int | list[int]]]`\n\nTokenizes the contents of a file into a list of token IDs or a nested `OrderedDict` structure.\n\n**Parameters:**\n\n- `filePath` (`Path | str`): The path to the file to tokenize.\n- `model` (`str`, optional): The name of the model to use for encoding. **Default: `\"gpt-4o\"`**\n- `encodingName` (`str`, optional): The name of the encoding to use.\n- `encoding` (`tiktoken.Encoding`, optional): An existing `tiktoken.Encoding` object to use for tokenization.\n- `quiet` (`bool`, optional): If `True`, suppresses progress updates.\n- `mapTokens` (`bool`, optional): If `True`, outputs an `OrderedDict` where the key is the filename and the value is another `OrderedDict` with keys `\"tokens\"` (the list of token IDs) and `\"numTokens\"` (the total token count). If `False`, returns just the list of token IDs. **Default: `False`**\n\n**Returns:**\n\n- `list[int]`: A list of token IDs representing the tokenized file contents if `mapTokens` is `False`.\n- `OrderedDict[str, OrderedDict[str, int | list[int]]]`: An `OrderedDict` as described above if `mapTokens` is `True`.\n\n**Raises:**\n\n- `TypeError`: If the types of input parameters are incorrect.\n- `ValueError`: If the provided model or encoding is invalid.\n- `UnsupportedEncodingError`: If the file encoding is not supported.\n- `FileNotFoundError`: If the file does not exist.\n\n**Example:**\n\n```python\nfrom pathlib import Path\nimport PyTokenCounter as tc\nfrom collections import OrderedDict\nimport tiktoken\n\nfilePath = Path(\"TestFile1.txt\")\ntokens = tc.TokenizeFile(filePath=filePath, model=\"gpt-4o\")\nprint(tokens)\n\nfilePath = Path(\"TestFile1.txt\")\nmappedTokensFile = tc.TokenizeFile(filePath=filePath, model=\"gpt-4o\", mapTokens=True)\nprint(mappedTokensFile)\n\nfilePath = Path(\"TestFile1.txt\")\ntokens = tc.TokenizeFile(filePath=filePath)\nprint(tokens)\n\nimport tiktoken\nencoding = tiktoken.get_encoding(\"p50k_base\")\nfilePath = Path(\"TestFile2.txt\")\nmappedTokensFileEncoding = tc.TokenizeFile(filePath=filePath, encoding=encoding, mapTokens=True)\nprint(mappedTokensFileEncoding)\n\nfilePath = Path(\"TestFile2.txt\")\nmappedTokensFileDefault = tc.TokenizeFile(filePath=filePath, mapTokens=True)\nprint(mappedTokensFileDefault)\n```\n\n---\n\n#### `GetNumTokenFile(filePath: Path | str, model: str | None = \"gpt-4o\", encodingName: str | None = None, encoding: tiktoken.Encoding | None = None, quiet: bool = False, mapTokens: bool = False) -> int | OrderedDict[str, int]`\n\nCounts the number of tokens in a file based on the specified model or encoding.\n\n**Parameters:**\n\n- `filePath` (`Path | str`): The path to the file to count tokens for.\n- `model` (`str`, optional): The name of the model to use for encoding. **Default: `\"gpt-4o\"`**\n- `encodingName` (`str`, optional): The name of the encoding to use.\n- `encoding` (`tiktoken.Encoding`, optional): An existing `tiktoken.Encoding` object to use for tokenization.\n- `quiet` (`bool`, optional): If `True`, suppresses progress updates.\n- `mapTokens` (`bool`, optional): If `True`, outputs an `OrderedDict` where the key is the filename and the value is the token count. If `False`, returns just the token count as an integer. **Default: `False`**\n\n**Returns:**\n\n- `int`: The number of tokens in the file if `mapTokens` is `False`.\n- `OrderedDict[str, int]`: An `OrderedDict` mapping the filename to its token count if `mapTokens` is `True`.\n\n**Raises:**\n\n- `TypeError`: If the types of `filePath`, `model`, `encodingName`, or `encoding` are incorrect.\n- `ValueError`: If the provided `model` or `encodingName` is invalid, or if there is a mismatch between the model and encoding name, or between the provided encoding and the derived encoding.\n- `UnsupportedEncodingError`: If the file's encoding cannot be determined.\n- `FileNotFoundError`: If the file does not exist.\n\n**Example:**\n\n```python\nimport PyTokenCounter as tc\nfrom pathlib import Path\nfrom collections import OrderedDict\n\nfilePath = Path(\"TestFile1.txt\")\nnumTokens = tc.GetNumTokenFile(filePath=filePath, model=\"gpt-4o\")\nprint(numTokens)\n\nfilePath = Path(\"TestFile1.txt\")\nmappedNumTokensFile = tc.GetNumTokenFile(filePath=filePath, model=\"gpt-4o\", mapTokens=True)\nprint(mappedNumTokensFile)\n\nfilePath = Path(\"TestFile1.txt\")\nnumTokens = tc.GetNumTokenFile(filePath=filePath)\nprint(numTokens)\n\nfilePath = Path(\"TestFile2.txt\")\nnumTokens = tc.GetNumTokenFile(filePath=filePath, model=\"gpt-4o\")\nprint(numTokens)\n\nfilePath = Path(\"TestFile2.txt\")\nnumTokens = tc.GetNumTokenFile(filePath=filePath)\nprint(numTokens)\n\nfilePath = Path(\"TestFile2.txt\")\nmappedNumTokensFileDefault = tc.GetNumTokenFile(filePath=filePath, mapTokens=True)\nprint(mappedNumTokensFileDefault)\n```\n\n---\n\n#### `TokenizeFiles(inputPath: Path | str | list[Path | str], model: str | None = \"gpt-4o\", encodingName: str | None = None, encoding: tiktoken.Encoding | None = None, recursive: bool = True, quiet: bool = False, exitOnListError: bool = True, mapTokens: bool = False, excludeBinary: bool = True, includeHidden: bool = False) -> list[int] | OrderedDict[str, list[int] | OrderedDict]`\n\nTokenizes multiple files or all files within a directory into lists of token IDs or a nested `OrderedDict` structure.\n\n**Parameters:**\n\n- `inputPath` (`Path | str | list[Path | str]`): The path to a file or directory, or a list of file paths to tokenize.\n- `model` (`str`, optional): The name of the model to use for encoding. **Default: `\"gpt-4o\"`**\n- `encodingName` (`str`, optional): The name of the encoding to use.\n- `encoding` (`tiktoken.Encoding`, optional): An existing `tiktoken.Encoding` object to use for tokenization.\n- `recursive` (`bool`, optional): If `inputPath` is a directory, whether to tokenize files in subdirectories recursively. **Default: `True`**\n- `quiet` (`bool`, optional): If `True`, suppresses progress updates. **Default: `False`**\n- `exitOnListError` (`bool`, optional): If `True`, stop processing the list upon encountering an error. If `False`, skip files that cause errors. **Default: `True`**\n- `mapTokens` (`bool`, optional): If `True`, outputs a nested `OrderedDict` structure. For files, the value is an `OrderedDict` with keys `\"tokens\"` (the list of token IDs) and `\"numTokens\"` (the total token count). For directories, the output is wrapped with `\"tokens\"` and `\"numTokens\"` keys. If `False`, returns a list of token IDs for a single file, or a dictionary mapping filenames to token lists for multiple files. **Default: `False`**\n- `excludeBinary` (`bool`, optional): Excludes any binary files by skipping over them. **Default: `True`**\n- `includeHidden` (`bool`, optional): Skips over hidden files and directories, including subdirectories and files of a hidden directory. **Default: `False`**\n\n**Returns:**\n\n- `list[int] | OrderedDict[str, list[int] | OrderedDict]`:\n - If `inputPath` is a file:\n - If `mapTokens` is `False`, returns a list of token IDs for that file.\n - If `mapTokens` is `True`, returns an `OrderedDict` with the structure described in the `mapTokens` parameter description.\n - If `inputPath` is a list of files, returns a dictionary where each key is the file name and the value depends on `mapTokens`:\n - If `mapTokens` is `False`, the value is the list of token IDs for that file.\n - If `mapTokens` is `True`, the value is an `OrderedDict` with the structure described in the `mapTokens` parameter description, wrapped under the key `\"tokens\"`, and the total token count under the key `\"numTokens\"` at the top level.\n - If `inputPath` is a directory:\n - If `recursive` is `True`, returns a nested `OrderedDict` where each key is a file or subdirectory name with corresponding token lists or sub-dictionaries. If `mapTokens` is `True`, the directory output is wrapped with `\"tokens\"` and `\"numTokens\"` keys.\n - If `recursive` is `False`, returns a dictionary with file names as keys and their token lists as values. If `mapTokens` is `True`, the directory output is wrapped with `\"tokens\"` and `\"numTokens\"` keys.\n\n**Raises:**\n\n- `TypeError`: If the types of `inputPath`, `model`, `encodingName`, `encoding`, or `recursive` are incorrect.\n- `ValueError`: If any of the provided file paths in a list are not files, or if a provided directory path is not a directory.\n- `UnsupportedEncodingError`: If any of the files to be tokenized have an unsupported encoding.\n- `RuntimeError`: If the provided `inputPath` is neither a file, a directory, nor a list.\n\n**Example:**\n\n```python\nfrom PyTokenCounter import TokenizeFiles\nfrom pathlib import Path\nfrom collections import OrderedDict\nimport tiktoken\n\ninputFiles = [\n Path(\"TestFile1.txt\"),\n Path(\"TestFile2.txt\"),\n]\ntokens = tc.TokenizeFiles(inputPath=inputFiles, model=\"gpt-4o\")\nprint(tokens)\n\nmappedTokensFiles = tc.TokenizeFiles(inputPath=inputFiles, model=\"gpt-4o\", mapTokens=True)\nprint(mappedTokensFiles)\n\ntokens = tc.TokenizeFiles(inputPath=inputFiles)\nprint(tokens)\n\n# Tokenizing multiple files using the default model\nmappedTokensFilesDefault = tc.TokenizeFiles(inputPath=inputFiles, mapTokens=True)\nprint(mappedTokensFilesDefault)\n\nimport tiktoken\nencoding = tiktoken.get_encoding('p50k_base')\ndirPath = Path(\"TestDir\")\nmappedDirTokensNonRecursiveEncoding = tc.TokenizeFiles(inputPath=dirPath, encoding=encoding, recursive=False, mapTokens=True)\nprint(mappedDirTokensNonRecursiveEncoding)\n\nmappedDirTokensRecursiveModel = tc.TokenizeFiles(inputPath=dirPath, model=\"gpt-4o\", recursive=True, mapTokens=True)\nprint(mappedDirTokensRecursiveModel)\n\nmappedDirTokensRecursiveDefault = tc.TokenizeFiles(inputPath=dirPath, recursive=True, mapTokens=True)\nprint(mappedDirTokensRecursiveDefault)\n\n# Tokenizing a directory using the default model\nmappedDirTokensDefaultModel = tc.TokenizeFiles(inputPath=dirPath, recursive=True, mapTokens=True)\nprint(mappedDirTokensDefaultModel)\n```\n\n---\n\n#### `GetNumTokenFiles(inputPath: Path | str | list[Path | str], model: str | None = \"gpt-4o\", encodingName: str | None = None, encoding: tiktoken.Encoding | None = None, recursive: bool = True, quiet: bool = False, exitOnListError: bool = True, excludeBinary: bool = True, includeHidden: bool = False, mapTokens: bool = False) -> int | OrderedDict[str, int | OrderedDict]`\n\nCounts the number of tokens across multiple files or in all files within a directory, or returns a nested `OrderedDict` structure with counts.\n\n**Parameters:**\n\n- `inputPath` (`Path | str | list[Path | str]`): The path to a file or directory, or a list of file paths to count tokens for.\n- `model` (`str`, optional): The name of the model to use for encoding. **Default: `\"gpt-4o\"`**\n- `encodingName` (`str`, optional): The name of the encoding to use.\n- `encoding` (`tiktoken.Encoding`, optional): An existing `tiktoken.Encoding` object to use for tokenization.\n- `recursive` (`bool`, optional): If `inputPath` is a directory, whether to count tokens in files in subdirectories recursively. **Default: `True`**\n- `quiet` (`bool`, optional): If `True`, suppresses progress updates. **Default: `False`**\n- `exitOnListError` (`bool`, optional): If `True`, stop processing the list upon encountering an error. If `False`, skip files that cause errors. **Default: `True`**\n- `excludeBinary` (`bool`, optional): Excludes any binary files by skipping over them. **Default: `True`**\n- `includeHidden` (`bool`, optional): Skips over hidden files and directories, including subdirectories and files of a hidden directory. **Default: `False`**\n- `mapTokens` (`bool`, optional): If `True`, outputs a nested `OrderedDict` structure. For files, the value is the token count. For directories, the output is wrapped with `\"tokens\"` and `\"numTokens\"` keys, where `\"tokens\"` contains the nested counts. If `False`, returns the total token count as an integer. **Default: `False`**\n\n**Returns:**\n\n- `int`: The total number of tokens in the specified files or directory if `mapTokens` is `False`.\n- `OrderedDict[str, int | OrderedDict]`: An `OrderedDict` mirroring the directory structure with token counts if `mapTokens` is `True`.\n\n**Raises:**\n\n- `TypeError`: If the types of `inputPath`, `model`, `encodingName`, `encoding`, or `recursive` are incorrect.\n- `ValueError`: If any of the provided file paths in a list are not files, or if a provided directory path is not a directory, or if the provided model or encoding is invalid.\n- `UnsupportedEncodingError`: If any of the files to be tokenized have an unsupported encoding.\n- `RuntimeError`: If the provided `inputPath` is neither a file, a directory, nor a list.\n\n**Example:**\n\n```python\nimport PyTokenCounter as tc\nfrom pathlib import Path\nfrom collections import OrderedDict\nimport tiktoken\n\ninputFiles = [\n Path(\"TestFile1.txt\"),\n Path(\"TestFile2.txt\"),\n]\nnumTokens = tc.GetNumTokenFiles(inputPath=inputFiles, model='gpt-4o')\nprint(numTokens)\n\nmappedNumTokensFiles = tc.GetNumTokenFiles(inputPath=inputFiles, model='gpt-4o', mapTokens=True)\nprint(mappedNumTokensFiles)\n\n\nnumTokens = tc.GetNumTokenFiles(inputPath=inputFiles)\nprint(numTokens)\n\n# Counting tokens in multiple files using the default model\nmappedNumTokensFilesDefault = tc.GetNumTokenFiles(inputPath=inputFiles, mapTokens=True)\nprint(mappedNumTokensFilesDefault)\n\n\nimport tiktoken\nencoding = tiktoken.get_encoding('p50k_base')\ndirPath = Path(\"TestDir\")\nmappedNumTokensDirNonRecursiveEncoding = tc.GetNumTokenFiles(inputPath=dirPath, encoding=encoding, recursive=False, mapTokens=True)\nprint(mappedNumTokensDirNonRecursiveEncoding)\nnumTokensDirRecursiveModel = tc.GetNumTokenFiles(inputPath=dirPath, model='gpt-4o', recursive=True)\nprint(numTokensDirRecursiveModel)\n\nmappedNumTokensDirRecursiveModel = tc.GetNumTokenFiles(inputPath=dirPath, model='gpt-4o', recursive=True, mapTokens=True)\nprint(mappedNumTokensDirRecursiveModel)\n\n\n# Counting tokens in a directory using the default model\nmappedNumTokensDirRecursiveDefault = tc.GetNumTokenFiles(inputPath=dirPath, recursive=True, mapTokens=True)\nprint(mappedNumTokensDirRecursiveDefault)\n```\n\n---\n\n#### `TokenizeDir(dirPath: Path | str, model: str | None = \"gpt-4o\", encodingName: str | None = None, encoding: tiktoken.Encoding | None = None, recursive: bool = True, quiet: bool = False, mapTokens: bool = False, excludeBinary: bool = True, includeHidden: bool = False) -> OrderedDict[str, list[int] | OrderedDict]`\n\nTokenizes all files within a directory into a nested `OrderedDict` structure or lists of token IDs.\n\n**Parameters:**\n\n- `dirPath` (`Path | str`): The path to the directory to tokenize.\n- `model` (`str`, optional): The name of the model to use for encoding. **Default: `\"gpt-4o\"`**\n- `encodingName` (`str`, optional): The name of the encoding to use.\n- `encoding` (`tiktoken.Encoding`, optional): An existing `tiktoken.Encoding` object to use for tokenization.\n- `recursive` (`bool`, optional): Whether to tokenize files in subdirectories recursively. **Default: `True`**\n- `quiet` (`bool`, optional): If `True`, suppresses progress updates. **Default: `False`**\n- `mapTokens` (`bool`, optional): If `True`, outputs a nested `OrderedDict` where each key is a file or subdirectory name. For files, the value is an `OrderedDict` with keys `\"tokens\"` (the list of token IDs) and `\"numTokens\"` (the total token count). For directories, the output is recursively structured. If `False`, returns a nested `OrderedDict` of token lists without the `\"numTokens\"` wrapper. **Default: `False`**\n- `excludeBinary` (`bool`, optional): Excludes any binary files by skipping over them. **Default: `True`**\n- `includeHidden` (`bool`, optional): Skips over hidden files and directories, including subdirectories and files of a hidden directory. **Default: `False`**\n\n**Returns:**\n\n- `OrderedDict[str, list[int] | OrderedDict]`: A nested `OrderedDict` where each key is a file or subdirectory name. If `mapTokens` is `True`, directory entries include `\"numTokens\"` and `\"tokens\"` keys.\n\n**Raises:**\n\n- `TypeError`: If the types of input parameters are incorrect.\n- `ValueError`: If the provided path is not a directory or if the model or encoding is invalid.\n- `UnsupportedEncodingError`: If the file's encoding cannot be determined.\n- `FileNotFoundError`: If the directory does not exist.\n\n**Example:**\n\n```python\nimport PyTokenCounter as tc\nfrom pathlib import Path\nfrom collections import OrderedDict\n\ndirPath = Path(\"TestDir\")\ntokenizedDir = tc.TokenizeDir(dirPath=dirPath, model=\"gpt-4o\", recursive=True)\nprint(tokenizedDir)\n\nmappedTokenizedDir = tc.TokenizeDir(dirPath=dirPath, model=\"gpt-4o\", recursive=True, mapTokens=True)\nprint(mappedTokenizedDir)\n\ntokenizedDir = tc.TokenizeDir(dirPath=dirPath, recursive=True)\nprint(tokenizedDir)\n\n# Tokenizing a directory using the default model\nmappedTokenizedDirDefault = tc.TokenizeDir(dirPath=dirPath, recursive=True, mapTokens=True)\nprint(mappedTokenizedDirDefault)\n\ntokenizedDirNonRecursiveModel = tc.TokenizeDir(dirPath=dirPath, model=\"gpt-4o\", recursive=False)\nprint(tokenizedDirNonRecursiveModel)\n\nmappedTokenizedDirNonRecursiveModel = tc.TokenizeDir(dirPath=dirPath, model=\"gpt-4o\", recursive=False, mapTokens=True)\nprint(mappedTokenizedDirNonRecursiveModel)\n\ntokenizedDirNonRecursiveDefault = tc.TokenizeDir(dirPath=dirPath, recursive=False)\nprint(tokenizedDirNonRecursiveDefault)\n\n\nmappedTokenizedDirRecursiveModel = tc.TokenizeDir(dirPath=dirPath, model=\"gpt-4o\", recursive=True, mapTokens=True)\nprint(mappedTokenizedDirRecursiveModel)\n\n# Tokenizing a directory using the default model with token mapping\nmappedTokenizedDirRecursiveDefaultModel = tc.TokenizeDir(dirPath=dirPath, recursive=True, mapTokens=True)\nprint(mappedTokenizedDirRecursiveDefaultModel)\n```\n\n---\n\n#### `GetNumTokenDir(dirPath: Path | str, model: str | None = \"gpt-4o\", encodingName: str | None = None, encoding: tiktoken.Encoding | None = None, recursive: bool = True, quiet: bool = False, excludeBinary: bool = True, includeHidden: bool = False, mapTokens: bool = False) -> int | OrderedDict[str, int | OrderedDict]`\n\nCounts the number of tokens in all files within a directory, or returns a nested `OrderedDict` structure with counts.\n\n**Parameters:**\n\n- `dirPath` (`Path | str`): The path to the directory to count tokens for.\n- `model` (`str`, optional): The name of the model to use for encoding. **Default: `\"gpt-4o\"`**\n- `encodingName` (`str`, optional): The name of the encoding to use.\n- `encoding` (`tiktoken.Encoding`, optional): An existing `tiktoken.Encoding` object to use for tokenization.\n- `recursive` (`bool`, optional): Whether to count tokens in subdirectories recursively. **Default: `True`**\n- `quiet` (`bool`, optional): If `True`, suppresses progress updates. **Default: `False`**\n- `excludeBinary` (`bool`, optional): Excludes any binary files by skipping over them. **Default: `True`**\n- `includeHidden` (`bool`, optional): Skips over hidden files and directories, including subdirectories and files of a hidden directory. **Default: `False`**\n- `mapTokens` (`bool`, optional): If `True`, outputs a nested `OrderedDict` structure mirroring the directory structure. For files, the value is the token count. For directories, the output is wrapped with `\"tokens\"` and `\"numTokens\"` keys, where `\"tokens\"` contains the nested counts. If `False`, returns the total token count as an integer. **Default: `False`**\n\n**Returns:**\n\n- `int`: The total number of tokens in the directory if `mapTokens` is `False`.\n- `OrderedDict[str, int | OrderedDict]`: An `OrderedDict` mirroring the directory structure with token counts if `mapTokens` is `True`.\n\n**Raises:**\n\n- `TypeError`: If the types of input parameters are incorrect.\n- `ValueError`: If the provided path is not a directory or if the model or encoding is invalid.\n- `UnsupportedEncodingError`: If the file's encoding cannot be determined.\n- `FileNotFoundError`: If the directory does not exist.\n\n**Example:**\n\n```python\nimport PyTokenCounter as tc\nfrom pathlib import Path\nfrom collections import OrderedDict\n\ndirPath = Path(\"TestDir\")\nnumTokensDir = tc.GetNumTokenDir(dirPath=dirPath, model=\"gpt-4o\", recursive=True)\nprint(numTokensDir)\n\nmappedNumTokensDir = tc.GetNumTokenDir(dirPath=dirPath, model=\"gpt-4o\", recursive=True, mapTokens=True)\nprint(mappedNumTokensDir)\n\n# Counting tokens in a directory using the default model\nmappedNumTokensDirDefault = tc.GetNumTokenDir(dirPath=dirPath, recursive=True, mapTokens=True)\nprint(mappedNumTokensDirDefault)\n\nnumTokensDirNonRecursiveModel = tc.GetNumTokenDir(dirPath=dirPath, model=\"gpt-4o\", recursive=False)\nprint(numTokensDirNonRecursiveModel)\n\nmappedNumTokensDirNonRecursiveModel = tc.GetNumTokenDir(dirPath=dirPath, model=\"gpt-4o\", recursive=False, mapTokens=True)\nprint(mappedNumTokensDirNonRecursiveModel)\n\nnumTokensDirNonRecursiveDefault = tc.GetNumTokenDir(dirPath=dirPath, recursive=False)\nprint(numTokensDirNonRecursiveDefault)\n```\n\n---\n\n### Token Mapping\n\n#### `MapTokens(tokens: list[int] | OrderedDict[str, list[int] | OrderedDict], model: str | None = \"gpt-4o\", encodingName: str | None = None, encoding: tiktoken.Encoding | None = None) -> OrderedDict[str, str] | OrderedDict[str, OrderedDict[str, str] | OrderedDict]`\n\nMaps tokens to their corresponding decoded strings based on a specified encoding.\n\n**Parameters:**\n\n- `tokens` (`list[int] | OrderedDict[str, list[int] | OrderedDict]`): The tokens to be mapped. This can either be:\n - A list of integer tokens to decode.\n - An `OrderedDict` with string keys and values that are either:\n - A list of integer tokens.\n - Another nested `OrderedDict` with the same structure.\n- `model` (`str`, optional): The model name to use for determining the encoding. **Default: `\"gpt-4o\"`**\n- `encodingName` (`str`, optional): The name of the encoding to use.\n- `encoding` (`tiktoken.Encoding`, optional): The encoding object to use.\n\n**Returns:**\n\n- `OrderedDict[str, str] | OrderedDict[str, OrderedDict[str, str] | OrderedDict]`: A mapping of decoded strings to their corresponding integer tokens. If `tokens` is a nested structure, the result will maintain the same nested structure with decoded mappings.\n\n**Raises:**\n\n- `TypeError`: If `tokens` is not a list of integers or an `OrderedDict` of strings mapped to tokens.\n- `ValueError`: If an invalid model or encoding name is provided, or if the encoding does not match the model or encoding name.\n- `KeyError`: If a token is not in the given encoding's vocabulary.\n- `RuntimeError`: If an unexpected error occurs while validating the encoding.\n\n**Example:**\n\n```python\nimport PyTokenCounter as tc\nimport tiktoken\nfrom collections import OrderedDict\n\nencoding = tiktoken.get_encoding(\"cl100k_base\")\ntokens = [123,456,789]\nmapped = tc.MapTokens(tokens=tokens, encoding=encoding)\nprint(mapped)\n\nmapped = tc.MapTokens(tokens=tokens, encoding=encoding)\nprint(mapped)\n\n# Mapping tokens using the default model\nmapped = tc.MapTokens(tokens=tokens)\nprint(mapped)\n```\n\n---\n\n## Ignored Files\n\nWhen the functions are set to exclude binary files (default behavior), the following file extensions are ignored:\n\n| Category | Extensions |\n|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| **Image formats** | `.png`, `.jpg`, `.jpeg`, `.gif`, `.bmp`, `.pbm`, `.webp`, `.avif`, `.tiff`, `.tif`, `.ico`, `.svgz` |\n| **Video formats** | `.mp4`, `.mkv`, `.mov`, `.avi`, `.wmv`, `.flv`, `.webm`, `.m4v`, `.mpeg`, `.mpg`, `.3gp`, `.3g2` |\n| **Audio formats** | `.mp3`, `.wav`, `.flac`, `.ogg`, `.aac`, `.m4a`, `.wma`, `.aiff`, `.ape`, `.opus` |\n| **Compressed archives** | `.zip`, `.rar`, `.7z`, `.tar`, `.gz`, `.bz2`, `.xz`, `.lz`, `.zst`, `.cab`, `.deb`, `.rpm`, `.pkg` |\n| **Disk images** | `.iso`, `.dmg`, `.img`, `.vhd`, `.vmdk` |\n| **Executables & Libraries** | `.exe`, `.msi`, `.bat`, `.dll`, `.so`, `.bin`, `.o`, `.a`, `.dylib` |\n| **Fonts** | `.ttf`, `.otf`, `.woff`, `.woff2`, `.eot` |\n| **Documents** | `.pdf`, `.ps`, `.eps` |\n| **Design & Graphics** | `.psd`, `.ai`, `.indd`, `.sketch` |\n| **3D & CAD files** | `.blend`, `.stl`, `.step`, `.iges`, `.fbx`, `.glb`, `.gltf`, `.3ds`, `.obj`, `.cad` |\n| **Virtual Machines & Firmware** | `.qcow2`, `.vdi`, `.vhdx`, `.rom`, `.bin`, `.img` |\n| **Miscellaneous binaries** | `.dat`, `.pak`, `.sav`, `.nes`, `.gba`, `.nds`, `.iso`, `.jar`, `.class`, `.wasm` |\n\nAlong with ignoring the extensions in the exclude list to quickly bypass known files that cannot be read, the code also catches decoding errors and skips files when `excludeBinary` is `True`. This approach ensures all unreadable files are handled efficiently, combining fast extension-based checks with robust decoding error handling.\n\n---\n\n## Maintainers\n\n- [Kaden Gruizenga](https://github.com/kgruiz)\n\n## Acknowledgements\n\n- This project is based on the `tiktoken` library created by [OpenAI](https://github.com/openai/tiktoken).\n\n## Contributing\n\nContributions are welcome! Feel free to [open an issue](https://github.com/kgruiz/PyTokenCounter/issues/new) or submit a pull request.\n\n## License\n\nThis project is licensed under the GNU General Public License v3.0. See the [LICENSE](LICENSE) file for more details.\n",
"bugtrack_url": null,
"license": "GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/> Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. \"This License\" refers to version 3 of the GNU General Public License. \"Copyright\" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. \"The Program\" refers to any copyrightable work licensed under this License. Each licensee is addressed as \"you\". \"Licensees\" and \"recipients\" may be individuals or organizations. To \"modify\" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a \"modified version\" of the earlier work or a work \"based on\" the earlier work. A \"covered work\" means either the unmodified Program or a work based on the Program. To \"propagate\" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To \"convey\" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays \"Appropriate Legal Notices\" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The \"source code\" for a work means the preferred form of the work for making modifications to it. \"Object code\" means any non-source form of a work. A \"Standard Interface\" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The \"System Libraries\" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A \"Major Component\", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The \"Corresponding Source\" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a) The work must carry prominent notices stating that you modified it, and giving a relevant date. b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to \"keep intact all notices\". c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an \"aggregate\" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A \"User Product\" is either (1) a \"consumer product\", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, \"normally used\" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. \"Installation Information\" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. \"Additional permissions\" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d) Limiting the use for publicity purposes of names of licensors or authors of the material; or e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered \"further restrictions\" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An \"entity transaction\" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A \"contributor\" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's \"contributor version\". A contributor's \"essential patent claims\" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, \"control\" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a \"patent license\" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To \"grant\" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. \"Knowingly relying\" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is \"discriminatory\" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License \"or any later version\" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM \"AS IS\" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the \"copyright\" line and a pointer to where the full notice is found. <one line to give the program's name and a brief idea of what it does.> Copyright (C) <year> <name of author> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <https://www.gnu.org/licenses/>. Also add information on how to contact you by electronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode: <program> Copyright (C) <year> <name of author> This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an \"about box\". You should also get your employer (if you work as a programmer) or school, if any, to sign a \"copyright disclaimer\" for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see <https://www.gnu.org/licenses/>. The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read <https://www.gnu.org/licenses/why-not-lgpl.html>.",
"summary": "A Python library for tokenizing text and counting tokens using various encoding schemes.",
"version": "1.6.4",
"project_urls": {
"bug_tracker": "https://github.com/kgruiz/PyTokenCounter/issues",
"documentation": "https://github.com/kgruiz/PyTokenCounter#readme",
"homepage": "https://github.com/kgruiz/PyTokenCounter",
"repository": "https://github.com/kgruiz/PyTokenCounter"
},
"split_keywords": [
"tokenization",
" encoding",
" tiktoken",
" openai",
" gpt",
" language-model",
" llm",
" transformers",
" natural-language-processing",
" nlp",
" machine-learning",
" ai",
" text-processing",
" language-models"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b2b540fbe22c6a244b4c6c2c880f3939ec2a88b6d1ee64d7fb8b1d1f6ddbdf1f",
"md5": "a40658b578e5fd8e725bae1ae027ddbd",
"sha256": "0732d59b209671ef7adda5906e3f333d3ac7da11cacead6ff2f382aae9c32020"
},
"downloads": -1,
"filename": "PyTokenCounter-1.6.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a40658b578e5fd8e725bae1ae027ddbd",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11",
"size": 52228,
"upload_time": "2025-02-03T23:06:05",
"upload_time_iso_8601": "2025-02-03T23:06:05.148738Z",
"url": "https://files.pythonhosted.org/packages/b2/b5/40fbe22c6a244b4c6c2c880f3939ec2a88b6d1ee64d7fb8b1d1f6ddbdf1f/PyTokenCounter-1.6.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2fc17ab84ab5d4863b3221ad89461fe32c171844578f21efd3e87c847c14e58d",
"md5": "37d73e9b0399812e67f3e38eb63eb7da",
"sha256": "9157ea3cec7cc860304f098ee18168c51cae156f0cbc1cbd6b31aa3f4eb66eb5"
},
"downloads": -1,
"filename": "pytokencounter-1.6.4.tar.gz",
"has_sig": false,
"md5_digest": "37d73e9b0399812e67f3e38eb63eb7da",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.11",
"size": 78117,
"upload_time": "2025-02-03T23:06:07",
"upload_time_iso_8601": "2025-02-03T23:06:07.246009Z",
"url": "https://files.pythonhosted.org/packages/2f/c1/7ab84ab5d4863b3221ad89461fe32c171844578f21efd3e87c847c14e58d/pytokencounter-1.6.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-03 23:06:07",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kgruiz",
"github_project": "PyTokenCounter",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "pytokencounter"
}