# Pynamic Gain
Python-based Dynamic Gain inputs for distributed patch clamp setup.
## Installation
Easiest way to install is via conda and pip:
```bash
conda create -n pydg_analysis python=3.11
conda activate pydg_analysis
pip install pynamicgain
```
Verify the installation with:
```bash
pydg_help
```
See the [documentation](https://fschwar4.github.io/pynamicgain/) for more information.
Raw data
{
"_id": null,
"home_page": null,
"name": "PynamicGain",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.11",
"maintainer_email": "Friedrich Schwarz <friedrichschwarz@unigoettingen.de>",
"keywords": "neuroscience, electrophysiology, patch clamp, scientific software, data analysis, dynamic gain",
"author": "Andreas Neef, Stefan Pommer",
"author_email": "Friedrich Schwarz <friedrichschwarz@unigoettingen.de>",
"download_url": "https://files.pythonhosted.org/packages/90/b3/e22a9e620ed743a181928d08cd8dfbaa9f9ea0b387f9dabdeb4b60cc3b0e/pynamicgain-0.0.9.tar.gz",
"platform": null,
"description": "# Pynamic Gain\n\nPython-based Dynamic Gain inputs for distributed patch clamp setup.\n\n\n## Installation\n\nEasiest way to install is via conda and pip:\n\n```bash\nconda create -n pydg_analysis python=3.11\nconda activate pydg_analysis\npip install pynamicgain\n```\n\nVerify the installation with:\n\n```bash\npydg_help\n```\n\nSee the [documentation](https://fschwar4.github.io/pynamicgain/) for more information.\n\n",
"bugtrack_url": null,
"license": null,
"summary": "Dynamic Gain input generation for distributed PClamp setups.",
"version": "0.0.9",
"project_urls": {
"Bug Tracker": "https://github.com/fschwar4/pynamicgain/issues",
"Changelog": "https://github.com/fschwar4/pynamicgain/blob/main/CHANGELOG.md",
"Documentation": "https://fschwar4.github.io/pynamicgain/",
"Homepage": "https://fschwar4.github.io/pynamicgain/",
"Repository": "https://github.com/fschwar4/pynamicgain"
},
"split_keywords": [
"neuroscience",
" electrophysiology",
" patch clamp",
" scientific software",
" data analysis",
" dynamic gain"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "0f55fb0411fd9f67ef90c204df053fcfabbbc5d9980fe0e084e7179d3e2e4425",
"md5": "fb382bc1a1e0eaa007da03e548eab3e9",
"sha256": "36387c8a74ef7f253c2afdb6ef7250f32d6ad871552a44579a70ef9d96c8ce8a"
},
"downloads": -1,
"filename": "PynamicGain-0.0.9-py3-none-any.whl",
"has_sig": false,
"md5_digest": "fb382bc1a1e0eaa007da03e548eab3e9",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11",
"size": 33690,
"upload_time": "2024-06-01T00:29:43",
"upload_time_iso_8601": "2024-06-01T00:29:43.428979Z",
"url": "https://files.pythonhosted.org/packages/0f/55/fb0411fd9f67ef90c204df053fcfabbbc5d9980fe0e084e7179d3e2e4425/PynamicGain-0.0.9-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "90b3e22a9e620ed743a181928d08cd8dfbaa9f9ea0b387f9dabdeb4b60cc3b0e",
"md5": "0cd5ebe92f3eeb9911ba9eb586c6a519",
"sha256": "4d2b34e15d370207b0a887ef5bcf03228c9077b580413fb75f2089c758c77600"
},
"downloads": -1,
"filename": "pynamicgain-0.0.9.tar.gz",
"has_sig": false,
"md5_digest": "0cd5ebe92f3eeb9911ba9eb586c6a519",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.11",
"size": 29783,
"upload_time": "2024-06-01T00:29:45",
"upload_time_iso_8601": "2024-06-01T00:29:45.207740Z",
"url": "https://files.pythonhosted.org/packages/90/b3/e22a9e620ed743a181928d08cd8dfbaa9f9ea0b387f9dabdeb4b60cc3b0e/pynamicgain-0.0.9.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-06-01 00:29:45",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "fschwar4",
"github_project": "pynamicgain",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "pynamicgain"
}