PynamicGain


NamePynamicGain JSON
Version 0.0.9 PyPI version JSON
download
home_pageNone
SummaryDynamic Gain input generation for distributed PClamp setups.
upload_time2024-06-01 00:29:45
maintainerNone
docs_urlNone
authorAndreas Neef, Stefan Pommer
requires_python>=3.11
licenseNone
keywords neuroscience electrophysiology patch clamp scientific software data analysis dynamic gain
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Pynamic Gain

Python-based Dynamic Gain inputs for distributed patch clamp setup.


## Installation

Easiest way to install is via conda and pip:

```bash
conda create -n pydg_analysis python=3.11
conda activate pydg_analysis
pip install pynamicgain
```

Verify the installation with:

```bash
pydg_help
```

See the [documentation](https://fschwar4.github.io/pynamicgain/) for more information.


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "PynamicGain",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": "Friedrich Schwarz <friedrichschwarz@unigoettingen.de>",
    "keywords": "neuroscience, electrophysiology, patch clamp, scientific software, data analysis, dynamic gain",
    "author": "Andreas Neef, Stefan Pommer",
    "author_email": "Friedrich Schwarz <friedrichschwarz@unigoettingen.de>",
    "download_url": "https://files.pythonhosted.org/packages/90/b3/e22a9e620ed743a181928d08cd8dfbaa9f9ea0b387f9dabdeb4b60cc3b0e/pynamicgain-0.0.9.tar.gz",
    "platform": null,
    "description": "# Pynamic Gain\n\nPython-based Dynamic Gain inputs for distributed patch clamp setup.\n\n\n## Installation\n\nEasiest way to install is via conda and pip:\n\n```bash\nconda create -n pydg_analysis python=3.11\nconda activate pydg_analysis\npip install pynamicgain\n```\n\nVerify the installation with:\n\n```bash\npydg_help\n```\n\nSee the [documentation](https://fschwar4.github.io/pynamicgain/) for more information.\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Dynamic Gain input generation for distributed PClamp setups.",
    "version": "0.0.9",
    "project_urls": {
        "Bug Tracker": "https://github.com/fschwar4/pynamicgain/issues",
        "Changelog": "https://github.com/fschwar4/pynamicgain/blob/main/CHANGELOG.md",
        "Documentation": "https://fschwar4.github.io/pynamicgain/",
        "Homepage": "https://fschwar4.github.io/pynamicgain/",
        "Repository": "https://github.com/fschwar4/pynamicgain"
    },
    "split_keywords": [
        "neuroscience",
        " electrophysiology",
        " patch clamp",
        " scientific software",
        " data analysis",
        " dynamic gain"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0f55fb0411fd9f67ef90c204df053fcfabbbc5d9980fe0e084e7179d3e2e4425",
                "md5": "fb382bc1a1e0eaa007da03e548eab3e9",
                "sha256": "36387c8a74ef7f253c2afdb6ef7250f32d6ad871552a44579a70ef9d96c8ce8a"
            },
            "downloads": -1,
            "filename": "PynamicGain-0.0.9-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fb382bc1a1e0eaa007da03e548eab3e9",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11",
            "size": 33690,
            "upload_time": "2024-06-01T00:29:43",
            "upload_time_iso_8601": "2024-06-01T00:29:43.428979Z",
            "url": "https://files.pythonhosted.org/packages/0f/55/fb0411fd9f67ef90c204df053fcfabbbc5d9980fe0e084e7179d3e2e4425/PynamicGain-0.0.9-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "90b3e22a9e620ed743a181928d08cd8dfbaa9f9ea0b387f9dabdeb4b60cc3b0e",
                "md5": "0cd5ebe92f3eeb9911ba9eb586c6a519",
                "sha256": "4d2b34e15d370207b0a887ef5bcf03228c9077b580413fb75f2089c758c77600"
            },
            "downloads": -1,
            "filename": "pynamicgain-0.0.9.tar.gz",
            "has_sig": false,
            "md5_digest": "0cd5ebe92f3eeb9911ba9eb586c6a519",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 29783,
            "upload_time": "2024-06-01T00:29:45",
            "upload_time_iso_8601": "2024-06-01T00:29:45.207740Z",
            "url": "https://files.pythonhosted.org/packages/90/b3/e22a9e620ed743a181928d08cd8dfbaa9f9ea0b387f9dabdeb4b60cc3b0e/pynamicgain-0.0.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-01 00:29:45",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "fschwar4",
    "github_project": "pynamicgain",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "pynamicgain"
}
        
Elapsed time: 1.05645s