QuantFin


NameQuantFin JSON
Version 0.0.10 PyPI version JSON
download
home_pagehttps://github.com/yuz0101/QuantFin
SummaryLibrary for Academic Research on Asset Pricing
upload_time2024-02-27 16:57:28
maintainer
docs_urlNone
authorStephen Zhang
requires_python
licenseMIT
keywords academic empirical fiance research quant portfolio
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # QuantFin
A toolkit for asset pricing.
Working... ...

### Install

```consol
pip install QuantFin
```

### Get started

#### Momentum Effects

1) Calculat momentum value on stocks (MOM)
2) Sort stocks on MOM into 10 decile portfolio
3) Report 

```Python

import numpy as np
import pandas as pd
from QuantFin import univariate_sorting, cal_portfolio_rets

# Read CRSP monthly dataset (Source: WRDS)
crsp = ''
crsp.columns = crsp.columns.str.lower()

"""
Screen the sample

1) The sample includes only stocks that are ordinary common share. E.g., shrcd == 10 or 11.
2) The sample includes only stocks listed on NYSE, AMEX or NASDAQ. E.g., exchcd is 1,2,3,31,32 or 33.
3) The sample includes only stocks with valid share price. E.g., prc > 0.
"""

crsp.query("shrcd==10 or shrcd==11", inplcae=True)
crsp.query("exchcd==1 or exchcd==31 or exchcd==2 or exchcd==32 or exchcd==3 or exchcd==33", inplcae=True)
crsp.query('prc > 0', inplcae=True)
crsp.drop_duplicates(['date', 'permno'], inplcae=True)
crsp.set_index(['date', 'permno'], inplcae=True)
crsp = crsp['ret']

"""
# measure mom effects in an efficient way but ignore the requirement of minimum observations
mom = rollingGeometricReturn(mom, 11)
mom = 100*mom
"""

# measure mom effects
mom = mom + 1
mom = mom.rolling(window=11, min_periods=9).apply(pd.DataFrame.prod)
mom = 100*(mom-1)

# skip the most recent month, mom[-11, -1]
mom = mom.shift(1) 
mom = mom.unstack().rename('mom').reset_index()
mom = mom.merge(crsp, on=['permno', 'date'], how='left')

# sort stocks based on last period's mom, mom(t-1)
mom = mom.sort_values(['permno', 'date'])
mom.loc[:, 'mom(t-1)'] = mom.groupby(['permno'])['mom'].shift(1)
mom = univariate_sorting(mom, on='mom(t-1)', time_label='date', port_label='port', method='smart')

# calculate returns on the formed portfolis
sample = mom.query("'1963-06-30' <= date <= '2021-12-31'")
samp_ret = cal_portfolio_rets(panel_data=sample, ret_label='ret', time_label='date', port_label='port')
#samp_ret = cal_portfolio_rets(panel_data=sample, ret_label='ret', time_label='date', port_label='port', weight_on='marketCap') # calcualte value-weighted returns for portfolios
np.log(samp_ret+1).cumsum().plot(figsize=(16,8), title='Momentum Portfolios Cumulative Returns')
```
![Momentum Portfolios Returns](momPortsRets.png)

Print summary performance of portfolios, including mean returns and alphas(FF5):
```python
from QuantFin import Performance
samp_ret['10-1'] = samp_ret.loc[:, 10] - samp_ret.loc[:, 1]
print(Performance(samp_ret, models=['FF5']).summary())
```

![Momentum Portfolios Returns](momRetsMean2.png)

Run PanelOLS/Fama-MacBeth regressions and collect results:

```python
from QuantFin import multiregs

formulas = {
    "Customised FixedEffects": "rets ~ 1 + mom', fe(permno year)",
    "Filter data": "rets ~ 1 + mom if date >= '2000-01-01', fe(permno year)",
    "Cluster Standard Errors": "rets ~ 1 + mom if date >= '2000-01-01', fe(permno year), cluster(permno)",
    "FamaMacbeth": "rets ~ 1 + mom if date >= '2000-01-01', famamacbeth, robust",
    "logFunct": "mom ~ 1 + log(marketCap) + bm + illiq + turnover, fe(permno date), cluster(permno)",
    "Interaction": "mom ~ 1 + log(marketCap)##bm + illiq +turnover, fe(permno date), cluster(date)" 
}

multiregs(formulas, data=sample)
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/yuz0101/QuantFin",
    "name": "QuantFin",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "ACADEMIC,EMPIRICAL,FIANCE,RESEARCH,QUANT,PORTFOLIO",
    "author": "Stephen Zhang",
    "author_email": "stephen_se@outlook.com",
    "download_url": "https://files.pythonhosted.org/packages/bd/7a/4bfae4b353cdcd570c64819c3983be0242c7891e736e0730bae8c2d2ab0d/QuantFin-0.0.10.tar.gz",
    "platform": null,
    "description": "# QuantFin\r\nA toolkit for asset pricing.\r\nWorking... ...\r\n\r\n### Install\r\n\r\n```consol\r\npip install QuantFin\r\n```\r\n\r\n### Get started\r\n\r\n#### Momentum Effects\r\n\r\n1) Calculat momentum value on stocks (MOM)\r\n2) Sort stocks on MOM into 10 decile portfolio\r\n3) Report \r\n\r\n```Python\r\n\r\nimport numpy as np\r\nimport pandas as pd\r\nfrom QuantFin import univariate_sorting, cal_portfolio_rets\r\n\r\n# Read CRSP monthly dataset (Source: WRDS)\r\ncrsp = ''\r\ncrsp.columns = crsp.columns.str.lower()\r\n\r\n\"\"\"\r\nScreen the sample\r\n\r\n1) The sample includes only stocks that are ordinary common share. E.g., shrcd == 10 or 11.\r\n2) The sample includes only stocks listed on NYSE, AMEX or NASDAQ. E.g., exchcd is 1,2,3,31,32 or 33.\r\n3) The sample includes only stocks with valid share price. E.g., prc > 0.\r\n\"\"\"\r\n\r\ncrsp.query(\"shrcd==10 or shrcd==11\", inplcae=True)\r\ncrsp.query(\"exchcd==1 or exchcd==31 or exchcd==2 or exchcd==32 or exchcd==3 or exchcd==33\", inplcae=True)\r\ncrsp.query('prc > 0', inplcae=True)\r\ncrsp.drop_duplicates(['date', 'permno'], inplcae=True)\r\ncrsp.set_index(['date', 'permno'], inplcae=True)\r\ncrsp = crsp['ret']\r\n\r\n\"\"\"\r\n# measure mom effects in an efficient way but ignore the requirement of minimum observations\r\nmom = rollingGeometricReturn(mom, 11)\r\nmom = 100*mom\r\n\"\"\"\r\n\r\n# measure mom effects\r\nmom = mom + 1\r\nmom = mom.rolling(window=11, min_periods=9).apply(pd.DataFrame.prod)\r\nmom = 100*(mom-1)\r\n\r\n# skip the most recent month, mom[-11, -1]\r\nmom = mom.shift(1) \r\nmom = mom.unstack().rename('mom').reset_index()\r\nmom = mom.merge(crsp, on=['permno', 'date'], how='left')\r\n\r\n# sort stocks based on last period's mom, mom(t-1)\r\nmom = mom.sort_values(['permno', 'date'])\r\nmom.loc[:, 'mom(t-1)'] = mom.groupby(['permno'])['mom'].shift(1)\r\nmom = univariate_sorting(mom, on='mom(t-1)', time_label='date', port_label='port', method='smart')\r\n\r\n# calculate returns on the formed portfolis\r\nsample = mom.query(\"'1963-06-30' <= date <= '2021-12-31'\")\r\nsamp_ret = cal_portfolio_rets(panel_data=sample, ret_label='ret', time_label='date', port_label='port')\r\n#samp_ret = cal_portfolio_rets(panel_data=sample, ret_label='ret', time_label='date', port_label='port', weight_on='marketCap') # calcualte value-weighted returns for portfolios\r\nnp.log(samp_ret+1).cumsum().plot(figsize=(16,8), title='Momentum Portfolios Cumulative Returns')\r\n```\r\n![Momentum Portfolios Returns](momPortsRets.png)\r\n\r\nPrint summary performance of portfolios, including mean returns and alphas(FF5):\r\n```python\r\nfrom QuantFin import Performance\r\nsamp_ret['10-1'] = samp_ret.loc[:, 10] - samp_ret.loc[:, 1]\r\nprint(Performance(samp_ret, models=['FF5']).summary())\r\n```\r\n\r\n![Momentum Portfolios Returns](momRetsMean2.png)\r\n\r\nRun PanelOLS/Fama-MacBeth regressions and collect results:\r\n\r\n```python\r\nfrom QuantFin import multiregs\r\n\r\nformulas = {\r\n    \"Customised FixedEffects\": \"rets ~ 1 + mom', fe(permno year)\",\r\n    \"Filter data\": \"rets ~ 1 + mom if date >= '2000-01-01', fe(permno year)\",\r\n    \"Cluster Standard Errors\": \"rets ~ 1 + mom if date >= '2000-01-01', fe(permno year), cluster(permno)\",\r\n    \"FamaMacbeth\": \"rets ~ 1 + mom if date >= '2000-01-01', famamacbeth, robust\",\r\n    \"logFunct\": \"mom ~ 1 + log(marketCap) + bm + illiq + turnover, fe(permno date), cluster(permno)\",\r\n    \"Interaction\": \"mom ~ 1 + log(marketCap)##bm + illiq +turnover, fe(permno date), cluster(date)\" \r\n}\r\n\r\nmultiregs(formulas, data=sample)\r\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Library for Academic Research on Asset Pricing",
    "version": "0.0.10",
    "project_urls": {
        "Download": "https://github.com/yuz0101/QuantFin/archive/refs/tags/0.0.10",
        "Homepage": "https://github.com/yuz0101/QuantFin"
    },
    "split_keywords": [
        "academic",
        "empirical",
        "fiance",
        "research",
        "quant",
        "portfolio"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bd7a4bfae4b353cdcd570c64819c3983be0242c7891e736e0730bae8c2d2ab0d",
                "md5": "7c13ea846fdc86d4120941e320665d03",
                "sha256": "59590304a90ac9690bf15f672ce56bc052dca87e8aec00b54afffcf39cb389cf"
            },
            "downloads": -1,
            "filename": "QuantFin-0.0.10.tar.gz",
            "has_sig": false,
            "md5_digest": "7c13ea846fdc86d4120941e320665d03",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 183028,
            "upload_time": "2024-02-27T16:57:28",
            "upload_time_iso_8601": "2024-02-27T16:57:28.293171Z",
            "url": "https://files.pythonhosted.org/packages/bd/7a/4bfae4b353cdcd570c64819c3983be0242c7891e736e0730bae8c2d2ab0d/QuantFin-0.0.10.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-27 16:57:28",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "yuz0101",
    "github_project": "QuantFin",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "quantfin"
}
        
Elapsed time: 3.74136s