# Quantile Regression
This repository is for Python implementations of basic Quantile Regression routines.
## References
### Articles, books
[RK1] Roger Koenker,
[Quantile Regression](https://books.google.com/books/about/Quantile_Regression.html?id=hdkt7V4NXsgC),
Cambridge University Press, 2005.
[RK2] Roger Koenker,
["Quantile Regression in R: a vignette"](https://cran.r-project.org/web/packages/quantreg/vignettes/rq.pdf),
(2006),
[CRAN](https://cran.r-project.org/).
[AA1] Anton Antonov,
["A monad for Quantile Regression workflows"](https://github.com/antononcube/MathematicaForPrediction/blob/master/MarkdownDocuments/A-monad-for-Quantile-Regression-workflows.md),
(2018),
[MathematicaForPrediction at GitHub](https://github.com/antononcube/MathematicaForPrediction).
### Packages, paclets
[RKp1] Roger Koenker,
[`quantreg`](https://cran.r-project.org/web/packages/quantreg/index.html),
[CRAN](https://cran.r-project.org/).
[AAp1] Anton Antonov,
[Quantile Regression WL paclet](https://github.com/antononcube/WL-QuantileRegression-paclet),
(2014-2023),
[GitHub/antononcube](https://github.com/antononcube).
[AAp2] Anton Antonov,
[Monadic Quantile Regression WL paclet](https://github.com/antononcube/WL-MonadicQuantileRegression-paclet),
(2018-2024),
[GitHub/antononcube](https://github.com/antononcube).
[AAp3] Anton Antonov,
[`QuantileRegression`](https://resources.wolframcloud.com/FunctionRepository/resources/QuantileRegression),
(2019),
[Wolfram Function Repository](https://resources.wolframcloud.com/FunctionRepository/resources/QuantileRegression).
### Repositories
[AAr1] Anton Antonov,
[DSL::English::QuantileRegressionWorkflows in Raku](https://github.com/antononcube/Raku-DSL-English-QuantileRegressionWorkflows),
(2020),
[GitHub/antononcube](https://github.com/antononcube/Raku-DSL-English-QuantileRegressionWorkflows).
### Videos
[AAv1] Anton Antonov,
["Boston useR! QuantileRegression Workflows 2019-04-18"](https://www.youtube.com/watch?v=a_Dk25xarvE),
(2019),
[Anton Antonov at YouTube](https://www.youtube.com/@AAA4Prediction).
[AAv2] Anton Antonov,
["useR! 2020: How to simplify Machine Learning workflows specifications"](https://www.youtube.com/watch?v=b9Uu7gRF5KY),
(2020),
[R Consortium at YouTube](https://www.youtube.com/channel/UC_R5smHVXRYGhZYDJsnXTwg).
Raw data
{
"_id": null,
"home_page": "https://github.com/antononcube/Python-packages/tree/main/QuantileRegression",
"name": "QuantileRegression",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "quantile regression, quantile, regression, optimization, fit, fitting",
"author": "Anton Antonov",
"author_email": "antononcube@posteo.net",
"download_url": "https://files.pythonhosted.org/packages/48/af/d1ac787c9ea5cce2a8b6aaf97a770daefec4d2faa1fc675517eb79cbc3ac/quantileregression-0.1.4.tar.gz",
"platform": null,
"description": "# Quantile Regression \n \nThis repository is for Python implementations of basic Quantile Regression routines. \n\n## References\n\n### Articles, books\n\n[RK1] Roger Koenker, \n[Quantile Regression](https://books.google.com/books/about/Quantile_Regression.html?id=hdkt7V4NXsgC), \nCambridge University Press, 2005.\n\n[RK2] Roger Koenker,\n[\"Quantile Regression in R: a vignette\"](https://cran.r-project.org/web/packages/quantreg/vignettes/rq.pdf),\n(2006),\n[CRAN](https://cran.r-project.org/).\n\n[AA1] Anton Antonov,\n[\"A monad for Quantile Regression workflows\"](https://github.com/antononcube/MathematicaForPrediction/blob/master/MarkdownDocuments/A-monad-for-Quantile-Regression-workflows.md),\n(2018),\n[MathematicaForPrediction at GitHub](https://github.com/antononcube/MathematicaForPrediction).\n\n### Packages, paclets\n\n[RKp1] Roger Koenker,\n[`quantreg`](https://cran.r-project.org/web/packages/quantreg/index.html),\n[CRAN](https://cran.r-project.org/).\n\n[AAp1] Anton Antonov,\n[Quantile Regression WL paclet](https://github.com/antononcube/WL-QuantileRegression-paclet),\n(2014-2023),\n[GitHub/antononcube](https://github.com/antononcube).\n\n[AAp2] Anton Antonov,\n[Monadic Quantile Regression WL paclet](https://github.com/antononcube/WL-MonadicQuantileRegression-paclet),\n(2018-2024),\n[GitHub/antononcube](https://github.com/antononcube).\n\n[AAp3] Anton Antonov,\n[`QuantileRegression`](https://resources.wolframcloud.com/FunctionRepository/resources/QuantileRegression),\n(2019),\n[Wolfram Function Repository](https://resources.wolframcloud.com/FunctionRepository/resources/QuantileRegression).\n\n### Repositories\n\n[AAr1] Anton Antonov,\n[DSL::English::QuantileRegressionWorkflows in Raku](https://github.com/antononcube/Raku-DSL-English-QuantileRegressionWorkflows),\n(2020),\n[GitHub/antononcube](https://github.com/antononcube/Raku-DSL-English-QuantileRegressionWorkflows).\n\n### Videos\n\n[AAv1] Anton Antonov,\n[\"Boston useR! QuantileRegression Workflows 2019-04-18\"](https://www.youtube.com/watch?v=a_Dk25xarvE),\n(2019),\n[Anton Antonov at YouTube](https://www.youtube.com/@AAA4Prediction).\n\n[AAv2] Anton Antonov,\n[\"useR! 2020: How to simplify Machine Learning workflows specifications\"](https://www.youtube.com/watch?v=b9Uu7gRF5KY),\n(2020),\n[R Consortium at YouTube](https://www.youtube.com/channel/UC_R5smHVXRYGhZYDJsnXTwg).\n",
"bugtrack_url": null,
"license": null,
"summary": "QuantileRegression package based on SciPy optimization routines.",
"version": "0.1.4",
"project_urls": {
"Homepage": "https://github.com/antononcube/Python-packages/tree/main/QuantileRegression"
},
"split_keywords": [
"quantile regression",
" quantile",
" regression",
" optimization",
" fit",
" fitting"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "dc4528a08a6c36238ec10ac2ca930e460acc87740f3965cb7ddf33338c449c98",
"md5": "1e91e979708265f339b7b021d44478c6",
"sha256": "49e4d824376dd2f480da3a57354a342d6df57dc437d4eb4667c834276d5055e8"
},
"downloads": -1,
"filename": "QuantileRegression-0.1.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "1e91e979708265f339b7b021d44478c6",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 5726,
"upload_time": "2024-08-26T20:49:43",
"upload_time_iso_8601": "2024-08-26T20:49:43.507013Z",
"url": "https://files.pythonhosted.org/packages/dc/45/28a08a6c36238ec10ac2ca930e460acc87740f3965cb7ddf33338c449c98/QuantileRegression-0.1.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "48afd1ac787c9ea5cce2a8b6aaf97a770daefec4d2faa1fc675517eb79cbc3ac",
"md5": "a2c7ac6a07884c9e0b504e4d4d62e4d5",
"sha256": "e6b8813efca354dccee1aa96fe8824d0d2a61774f1fc31ee0e2ae9b88de0d46f"
},
"downloads": -1,
"filename": "quantileregression-0.1.4.tar.gz",
"has_sig": false,
"md5_digest": "a2c7ac6a07884c9e0b504e4d4d62e4d5",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 5450,
"upload_time": "2024-08-26T20:49:44",
"upload_time_iso_8601": "2024-08-26T20:49:44.361231Z",
"url": "https://files.pythonhosted.org/packages/48/af/d1ac787c9ea5cce2a8b6aaf97a770daefec4d2faa1fc675517eb79cbc3ac/quantileregression-0.1.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-26 20:49:44",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "antononcube",
"github_project": "Python-packages",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "quantileregression"
}