RAGFlowChain


NameRAGFlowChain JSON
Version 0.5.1 PyPI version JSON
download
home_pagehttps://github.com/knowusuboaky/RAGFlowChain
SummaryA comprehensive toolkit for building Retrieval-Augmented Generation (RAG) pipelines, including data loading, vector database creation, retrieval, and chain management.
upload_time2024-10-04 18:17:07
maintainerNone
docs_urlNone
authorKwadwo Daddy Nyame Owusu - Boakye
requires_python>=3.7
licenseNone
keywords rag retrieval-augmented generation vector database data fetching generative ai ai machine learning ml genai langchain data processing information retrieval nlp natural language processing data science python text mining document processing faiss annoy chroma pytube nltk transformers
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # RAGFlowChain

[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Python Versions](https://img.shields.io/pypi/pyversions/ragflowchain.svg)](https://pypi.org/project/ragflowchain/)
[![PyPI version](https://badge.fury.io/py/ragflowchain.svg)](https://badge.fury.io/py/ragflowchain)
[![GitHub stars](https://img.shields.io/github/stars/knowusuboaky/RAGFlowChain.svg)](https://github.com/knowusuboaky/RAGFlowChain/stargazers)
[![GitHub forks](https://img.shields.io/github/forks/knowusuboaky/RAGFlowChain.svg)](https://github.com/knowusuboaky/RAGFlowChain/network/members)
[![GitHub issues](https://img.shields.io/github/issues/knowusuboaky/RAGFlowChain.svg)](https://github.com/knowusuboaky/RAGFlowChain/issues)
[![Email](https://img.shields.io/badge/Email-kwadwo.owusuboakye%40outlook.com-blue)](mailto:kwadwo.owusuboakye@outlook.com)


**RAGFlowChain** is a powerful and flexible toolkit designed for building Retrieval-Augmented Generation (RAG) pipelines. This library integrates data loading from various sources, vector database creation, and chain management, making it easier to develop advanced AI solutions that combine retrieval mechanisms with generative models.

## Features

- **Comprehensive Data Loading**: Fetch and process data from books, news articles, YouTube videos, websites, and local documents.
- **Vector Database Creation**: Create and manage vector databases using state-of-the-art embeddings with Chroma vector stores.
- **RAG Chain Management**: Seamlessly integrate retrieval with language models to build context-aware AI systems.
- **Extensible Design**: Easily extend and customize the pipeline to fit specific use cases.

## Workflow

<img src="https://github.com/knowusuboaky/RAGFlowChain/blob/main/README_files/figure-markdown/mermaid-figure-3.png?raw=true" width="2000" height="500" alt="Optional Alt Text">

## Installation

To install RAGFlowChain, simply run:

```bash
pip install RAGFlowChain==0.5.1
```

## Quickstart

### 1. Fetch Data from Multiple Sources

RAGFlowChain allows you to fetch and process data from various online and local sources, all integrated into a single DataFrame.

```python
from ragflowchain import data_loader
import yaml
import os

# API Keys

PATH_CREDENTIALS = '../credentials.yml'

BOOKS_API_KEY = yaml.safe_load(open(PATH_CREDENTIALS))['book']
NEWS_API_KEY = yaml.safe_load(open(PATH_CREDENTIALS))['news']
YOUTUBE_API_KEY = yaml.safe_load(open(PATH_CREDENTIALS))['youtube']

# Define online and local data sources
# Define URLs for websites
urls = [
    "https://www.honda.ca/en",
    "https://www.honda.ca/en/vehicles",
    "https://www.honda.ca/en/odyssey"
]

# Define online sources
online_sources = {
    'youtube': {
        'topic': 'honda acura',
        'api_key': YOUTUBE_API_KEY,
        'max_results': 10
    },
    'websites': urls,
    'books': {
        'api_key': BOOKS_API_KEY,
        'query': 'automobile industry',
        'max_results': 10
    },
    'news_articles': {
        'api_key': NEWS_API_KEY,
        'query': 'automobile marketing',
        'page_size': 5,
        'max_pages': 1
    }
}

local_sources = ["../folder/irt.ppt", "../book/book.pdf", "../documents/sample.docx", "../notes/note.txt"]

# Fetch and process the data
final_data_df = data_loader(online_sources=online_sources, local_sources=local_sources, chunk_size=1000)

# Display the DataFrame
print(final_data_df)
```

#### Return Values:

- **`final_data_df`**: 
  - **Type**: `pandas.DataFrame`
  - **Description**: The final DataFrame containing the processed data from all specified sources. It includes columns such as `source`, `title`, `author`, `publishedDate`, `description`, `content`, `url`, and `source_type`. Each row corresponds to a chunk of content from a source, making it ready for further processing or embedding.

### 2. Create a Vector Database

Once you have the data, you can create a vector database using the `create_database` function.

```python
from ragflowchain import create_database

# Create a vector store from the processed data
vectorstore, docs_recursive = create_database(
    df=final_data_df,
    page_content="content",
    embedding_function=None,  # Uses default SentenceTransformerEmbeddings
    vectorstore_method='Chroma',  # Options: 'Chroma', 'FAISS', 'Annoy'
    vectorstore_directory="data/chroma.db",  # Adjust according to vectorstore_method
    chunk_size=1000,
    chunk_overlap=100
)
```

#### Explanation of `create_database` Arguments:

- **`df`**: 
  - **Type**: `pandas.DataFrame`
  - **Description**: This is the DataFrame containing the processed data from various sources. The DataFrame should include a column with the main text content (`page_content`) that you want to split into chunks and store in the vector database. Other columns might include metadata like `source`, `title`, `author`, etc.

- **`page_content`**: 
  - **Type**: `str`
  - **Description**: The name of the column in the DataFrame (`df`) that contains the main text content. This content will be split into chunks and used to create the embeddings that are stored in the vector database.

- **`embedding_function`**: 
  - **Type**: (Optional) A function or model
  - **Description**: A function or pre-trained model used to generate embeddings for the text chunks. If not provided, it defaults to using the `SentenceTransformerEmbeddings` model from `sentence-transformers`, specifically the "all-MiniLM-L6-v2" model. This model converts text chunks into high-dimensional vectors that can be stored in the vector database.

- **`vectorstore_method`**: 
  - **Type**: `str`
  - **Description**: The method to use for the vector store. Options include:
    - `'Chroma'`: A flexible and persistent vector store that is saved to disk.
    - `'FAISS'`: High-performance, in-memory or disk-based approximate nearest neighbor search.
    - `'Annoy'`: Lightweight, memory-efficient approximate nearest neighbor search.

- **`vectorstore_directory`**: 
  - **Type**: `str`
  - **Description**: The file path to the directory where the vector store will be saved. This is used differently depending on the `vectorstore_method`:
    - For `Chroma`, this specifies the directory where the database is stored.
    - For `FAISS`, this is the path to save the FAISS index file.
    - For `Annoy`, this specifies the file path for the Annoy index.

- **`chunk_size`**: 
  - **Type**: `int`
  - **Description**: The maximum number of characters in each text chunk after splitting. This parameter ensures that the chunks are small enough to be processed efficiently but large enough to maintain context. The default value is `1000` characters.

- **`chunk_overlap`**: 
  - **Type**: `int`
  - **Description**: The number of overlapping characters between consecutive chunks. Overlap helps to maintain context across chunks, especially when important information might be split between two chunks. The default overlap is `100` characters.

#### Return Values:

- **`vectorstore`**: 
  - **Type**: Depends on `vectorstore_method` (`Chroma`, `FAISS`, or `Annoy`)
  - **Description**: The vector store object containing the embeddings for the text chunks. This vector store is saved in the specified directory (`vectorstore_directory`) and can be used for retrieval tasks.

- **`docs_recursive`**: 
  - **Type**: `List[Document]`
  - **Description**: A list of document chunks after recursive splitting. Each chunk is an instance of the `Document` class, containing both the content and metadata such as source, title, and other relevant information from the original DataFrame.

### 3. Build a RAG Chain

Integrate the data and vector store into a Retrieval-Augmented Generation (RAG) chain.

```python
from ragflowchain import create_rag_chain

# Create the RAG chain
rag_chain = create_rag_chain(
    llm=YourLanguageModel(),  # Replace with your LLM instance
    vector_database_directory="data/chroma.db",
    method='Chroma',  # Choose 'Chroma', 'FAISS', or 'Annoy'
    embedding_function=None,  # Optional, defaults to SentenceTransformerEmbeddings
    system_prompt="This is a system prompt.",  # Optional: Customize your system prompt
    chat_history_prompt="This is a chat history prompt.",  # Optional: Customize your chat history prompt
    tavily_search="YourTavilyAPIKey"  # Optional: Replace with your Tavily API key or TavilySearchResults instance
)
```

#### Explanation of `create_rag_chain` Arguments:

- **`llm`**: 
  - **Type**: Language model instance
  - **Description**: The language model that will be used in the RAG chain. This could be an instance of GPT-3 or any other compatible model.

- **`vector_database_directory`**: 
  - **Type**: `str`
  - **Description**: The directory where the vector store is located. The vector store contains the embeddings generated from the data.

- **`method`**: 
  - **Type**: `str`
  - **Description**: The method to use for the vector store. Options include:
    - `'Chroma'`: A flexible and persistent vector store that is saved to disk.
    - `'FAISS'`: High-performance, in-memory or disk-based approximate nearest neighbor search.
    - `'Annoy'`: Lightweight, memory-efficient approximate nearest neighbor search.

- **`embedding_function`**: 
  - **Type**: (Optional) A function or model
  - **Description**: The function or model used to generate embeddings during retrieval. Defaults to `SentenceTransformerEmbeddings` if not provided.

- **`system_prompt`**: 
  - **Type**: `str`
  - **Description**: A prompt given to the language model to guide its responses. This could include instructions or context specific to the application. If set to `None`, a default system prompt will be used.

- **`chat_history_prompt`**: 
  - **Type**: `str`
  - **Description**: A prompt template that incorporates the chat history, helping the model maintain context across multiple interactions. If set to `None`, a default prompt for contextualizing questions will be used.

- **`tavily_search`**: 
  - **Type**: `str` or `TavilySearchResults` instance (Optional)
  - **Description**: This argument allows you to integrate real-time web search results into your RAG chain. You can provide either your Tavily API key as a string or an instance of `TavilySearchResults`. If provided, the chain will include up-to-date web search results in its responses.

#### Return Values:

- **`rag_chain`**: 
  - **Type**: `RunnableWithMessageHistory`
  - **Description**: The RAG chain object that can be used to process user inputs and generate context-aware responses by combining retrieval and generative capabilities.

### 4. Run the RAG Chain Using `invoke`

```python
# Example usage with invoke method
result = rag_chain.invoke(
    {"input": "Your question here"}, 
    config={
        "configurable": {"session_id": "user123"}
    }
)

print(result["answer"])
```

#### Explanation of `invoke` Usage:

- **`invoke`**: This method is used to trigger the execution of the RAG chain. It’s preferred over `run` when working with configurable settings or when `invoke` is the designated method in the LangChain framework you’re using.

- **Input Dictionary**: The user’s question or input is passed as a dictionary with the key `"input"`.

- **`config` Dictionary**: Additional configurations can be passed using the `config` dictionary. Here, `"configurable": {"session_id": "user123"}` sets a session ID, which is useful for tracking the conversation history across multiple interactions.

#### Return Values:

- **`result`**: 
  - **Type**: `dict`
  - **Description**: A dictionary containing the model's response. The key `"answer"` contains the generated response to the user's input, while other keys might include additional metadata depending on the RAG chain configuration.

## Detailed Explanation of Function Arguments

### 1. `data_loader`

```python
data_loader(online_sources=None, local_sources=None, chunk_size=1000)
```

- **`online_sources`**: A dictionary specifying the online sources from which to fetch data. The keys represent the type of source, and the values are tuples containing the necessary parameters.
  - **`books`**: A tuple (`api_key`, `query`, `max_results`) for fetching books from Google Books API.
  - **`news_articles`**: A tuple (`api_key`, `query`, `page_size`, `max_pages`) for fetching news articles from NewsAPI.
  - **`youtube`**: A tuple (`query`, `api_key`, `max_results`) for fetching YouTube videos.
  - **`websites`**: A list of URLs to fetch content from websites.

- **`local_sources`**: A list of paths to local files (PDF, PPT, DOCX, TXT). The function loads and processes these documents into manageable chunks.

- **`chunk_size`**: The size of each text chunk, in characters. Default is `1000`. This determines how the text content is split, ensuring that chunks are neither too large nor too small.

### 2. `create_database`

```python
create_database(df, page_content, embedding_function=None, vectorstore_method='Chroma', vectorstore_directory="data/vectorstore.db", chunk_size=1000, chunk_overlap=100)
```

- **`df`**: A pandas DataFrame containing the processed data. This should include columns like `content`, `source`, etc.

- **`page_content`**: The name of the column in the DataFrame that contains the main text content to be embedded.

- **`embedding_function`**: (Optional) A function or model used to generate embeddings. Defaults to using `SentenceTransformerEmbeddings`.

- **`vectorstore_method`**: The method used for the vector store. Options include:
  - `'Chroma'`: For a flexible and persistent vector store saved to disk.
  - `'FAISS'`: For high-performance, in-memory, or disk-based approximate nearest neighbor search.
  - `'Annoy'`: For a lightweight, memory-efficient approximate nearest neighbor search.

- **`vectorstore_directory`**: The directory where the vector store will be saved. The default is `"data/vectorstore.db"`, but the exact usage depends on the `vectorstore_method`:
  - For `'Chroma'`, this specifies the directory where the database is stored.
  - For `'FAISS'`, this is the path to save the FAISS index file.
  - For `'Annoy'`, this specifies the file path for the Annoy index.

- **`chunk_size`**: The size of each text chunk, in characters, used during text splitting.

- **`chunk_overlap`**: The overlap between consecutive chunks, to maintain context. Default is `100`.

### 3. `create_rag_chain`
Here's the updated version of your code snippet and explanation to include the `tavily_search` argument and adjust the descriptions accordingly:

```python
create_rag_chain(llm, vector_database_directory, method='Chroma', embedding_function=None, system_prompt=None, chat_history_prompt=None, tavily_search=None)
```

- **`llm`**: The language model that will be used in the RAG chain. This could be an instance of GPT-3 or any other compatible model.

- **`vector_database_directory`**: The directory where the vector database is located.

- **`method`**: The method used for the vector store. Options include:
  - `'Chroma'`: For a flexible and persistent vector store saved to disk.
  - `'FAISS'`: For high-performance, in-memory, or disk-based approximate nearest neighbor search.
  - `'Annoy'`: For a lightweight, memory-efficient approximate nearest neighbor search.

- **`embedding_function`**: (Optional) The function or model used to generate embeddings during retrieval. If not provided, it defaults to using `SentenceTransformerEmbeddings`.

- **`system_prompt`**: (Optional) A prompt given to the language model to guide its responses. This could include instructions or context specific to the application. If set to `None`, a default system prompt will be used.

- **`chat_history_prompt`**: (Optional) A prompt template that incorporates the chat history, helping the model maintain context across multiple interactions. If set to `None`, a default prompt for contextualizing questions will be used.

- **`tavily_search`**: (Optional) This argument allows you to integrate real-time web search results into your RAG chain. You can provide either your Tavily API key as a string or an instance of `TavilySearchResults`. If provided, the chain will include up-to-date web search results in its responses.

### 4. `rag_chain.invoke`

```python
rag_chain.invoke({"input": question}, config={"configurable": {"session_id": "any"}})
```

- **`input`**: The user’s input or question, passed as a dictionary with the key `"input"`. This is the prompt or query that the model will process.

- **`config`**: A dictionary containing additional configuration settings. The `"configurable"` key allows you to set a session ID or other parameters that influence how the chain processes the input.

## Documentation

For more detailed documentation, including advanced usage and customization options, please visit the [GitHub repository](https://github.com/knowusuboaky/RAGFlowChain).

## License

RAGFlowChain is licensed under the MIT License. See the [LICENSE](LICENSE) file for more information.

## Acknowledgements

RAGFlowChain is built on top of powerful tools like [LangChain](https://github.com/hwchase17/langchain) and [Chroma](https://github.com/chroma-core/chroma). We thank the open-source community for their contributions.

Made with ❤️ by Kwadwo Daddy Nyame Owusu - Boakye.


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/knowusuboaky/RAGFlowChain",
    "name": "RAGFlowChain",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "RAG, Retrieval-Augmented Generation, Vector Database, Data Fetching, Generative AI, AI, Machine Learning, ML, GenAI, LangChain, Data Processing, Information Retrieval, NLP, Natural Language Processing, Data Science, Python, Text Mining, Document Processing, FAISS, Annoy, Chroma, pytube, nltk, transformers",
    "author": "Kwadwo Daddy Nyame Owusu - Boakye",
    "author_email": "kwadwo.owusuboakye@outlook.com",
    "download_url": "https://files.pythonhosted.org/packages/44/ad/320ac0e41b180f45a65c5181ce0d7d3bfd60992ff237829986a09f082312/RAGFlowChain-0.5.1.tar.gz",
    "platform": null,
    "description": "# RAGFlowChain\r\n\r\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\r\n[![Python Versions](https://img.shields.io/pypi/pyversions/ragflowchain.svg)](https://pypi.org/project/ragflowchain/)\r\n[![PyPI version](https://badge.fury.io/py/ragflowchain.svg)](https://badge.fury.io/py/ragflowchain)\r\n[![GitHub stars](https://img.shields.io/github/stars/knowusuboaky/RAGFlowChain.svg)](https://github.com/knowusuboaky/RAGFlowChain/stargazers)\r\n[![GitHub forks](https://img.shields.io/github/forks/knowusuboaky/RAGFlowChain.svg)](https://github.com/knowusuboaky/RAGFlowChain/network/members)\r\n[![GitHub issues](https://img.shields.io/github/issues/knowusuboaky/RAGFlowChain.svg)](https://github.com/knowusuboaky/RAGFlowChain/issues)\r\n[![Email](https://img.shields.io/badge/Email-kwadwo.owusuboakye%40outlook.com-blue)](mailto:kwadwo.owusuboakye@outlook.com)\r\n\r\n\r\n**RAGFlowChain** is a powerful and flexible toolkit designed for building Retrieval-Augmented Generation (RAG) pipelines. This library integrates data loading from various sources, vector database creation, and chain management, making it easier to develop advanced AI solutions that combine retrieval mechanisms with generative models.\r\n\r\n## Features\r\n\r\n- **Comprehensive Data Loading**: Fetch and process data from books, news articles, YouTube videos, websites, and local documents.\r\n- **Vector Database Creation**: Create and manage vector databases using state-of-the-art embeddings with Chroma vector stores.\r\n- **RAG Chain Management**: Seamlessly integrate retrieval with language models to build context-aware AI systems.\r\n- **Extensible Design**: Easily extend and customize the pipeline to fit specific use cases.\r\n\r\n## Workflow\r\n\r\n<img src=\"https://github.com/knowusuboaky/RAGFlowChain/blob/main/README_files/figure-markdown/mermaid-figure-3.png?raw=true\" width=\"2000\" height=\"500\" alt=\"Optional Alt Text\">\r\n\r\n## Installation\r\n\r\nTo install RAGFlowChain, simply run:\r\n\r\n```bash\r\npip install RAGFlowChain==0.5.1\r\n```\r\n\r\n## Quickstart\r\n\r\n### 1. Fetch Data from Multiple Sources\r\n\r\nRAGFlowChain allows you to fetch and process data from various online and local sources, all integrated into a single DataFrame.\r\n\r\n```python\r\nfrom ragflowchain import data_loader\r\nimport yaml\r\nimport os\r\n\r\n# API Keys\r\n\r\nPATH_CREDENTIALS = '../credentials.yml'\r\n\r\nBOOKS_API_KEY = yaml.safe_load(open(PATH_CREDENTIALS))['book']\r\nNEWS_API_KEY = yaml.safe_load(open(PATH_CREDENTIALS))['news']\r\nYOUTUBE_API_KEY = yaml.safe_load(open(PATH_CREDENTIALS))['youtube']\r\n\r\n# Define online and local data sources\r\n# Define URLs for websites\r\nurls = [\r\n    \"https://www.honda.ca/en\",\r\n    \"https://www.honda.ca/en/vehicles\",\r\n    \"https://www.honda.ca/en/odyssey\"\r\n]\r\n\r\n# Define online sources\r\nonline_sources = {\r\n    'youtube': {\r\n        'topic': 'honda acura',\r\n        'api_key': YOUTUBE_API_KEY,\r\n        'max_results': 10\r\n    },\r\n    'websites': urls,\r\n    'books': {\r\n        'api_key': BOOKS_API_KEY,\r\n        'query': 'automobile industry',\r\n        'max_results': 10\r\n    },\r\n    'news_articles': {\r\n        'api_key': NEWS_API_KEY,\r\n        'query': 'automobile marketing',\r\n        'page_size': 5,\r\n        'max_pages': 1\r\n    }\r\n}\r\n\r\nlocal_sources = [\"../folder/irt.ppt\", \"../book/book.pdf\", \"../documents/sample.docx\", \"../notes/note.txt\"]\r\n\r\n# Fetch and process the data\r\nfinal_data_df = data_loader(online_sources=online_sources, local_sources=local_sources, chunk_size=1000)\r\n\r\n# Display the DataFrame\r\nprint(final_data_df)\r\n```\r\n\r\n#### Return Values:\r\n\r\n- **`final_data_df`**: \r\n  - **Type**: `pandas.DataFrame`\r\n  - **Description**: The final DataFrame containing the processed data from all specified sources. It includes columns such as `source`, `title`, `author`, `publishedDate`, `description`, `content`, `url`, and `source_type`. Each row corresponds to a chunk of content from a source, making it ready for further processing or embedding.\r\n\r\n### 2. Create a Vector Database\r\n\r\nOnce you have the data, you can create a vector database using the `create_database` function.\r\n\r\n```python\r\nfrom ragflowchain import create_database\r\n\r\n# Create a vector store from the processed data\r\nvectorstore, docs_recursive = create_database(\r\n    df=final_data_df,\r\n    page_content=\"content\",\r\n    embedding_function=None,  # Uses default SentenceTransformerEmbeddings\r\n    vectorstore_method='Chroma',  # Options: 'Chroma', 'FAISS', 'Annoy'\r\n    vectorstore_directory=\"data/chroma.db\",  # Adjust according to vectorstore_method\r\n    chunk_size=1000,\r\n    chunk_overlap=100\r\n)\r\n```\r\n\r\n#### Explanation of `create_database` Arguments:\r\n\r\n- **`df`**: \r\n  - **Type**: `pandas.DataFrame`\r\n  - **Description**: This is the DataFrame containing the processed data from various sources. The DataFrame should include a column with the main text content (`page_content`) that you want to split into chunks and store in the vector database. Other columns might include metadata like `source`, `title`, `author`, etc.\r\n\r\n- **`page_content`**: \r\n  - **Type**: `str`\r\n  - **Description**: The name of the column in the DataFrame (`df`) that contains the main text content. This content will be split into chunks and used to create the embeddings that are stored in the vector database.\r\n\r\n- **`embedding_function`**: \r\n  - **Type**: (Optional) A function or model\r\n  - **Description**: A function or pre-trained model used to generate embeddings for the text chunks. If not provided, it defaults to using the `SentenceTransformerEmbeddings` model from `sentence-transformers`, specifically the \"all-MiniLM-L6-v2\" model. This model converts text chunks into high-dimensional vectors that can be stored in the vector database.\r\n\r\n- **`vectorstore_method`**: \r\n  - **Type**: `str`\r\n  - **Description**: The method to use for the vector store. Options include:\r\n    - `'Chroma'`: A flexible and persistent vector store that is saved to disk.\r\n    - `'FAISS'`: High-performance, in-memory or disk-based approximate nearest neighbor search.\r\n    - `'Annoy'`: Lightweight, memory-efficient approximate nearest neighbor search.\r\n\r\n- **`vectorstore_directory`**: \r\n  - **Type**: `str`\r\n  - **Description**: The file path to the directory where the vector store will be saved. This is used differently depending on the `vectorstore_method`:\r\n    - For `Chroma`, this specifies the directory where the database is stored.\r\n    - For `FAISS`, this is the path to save the FAISS index file.\r\n    - For `Annoy`, this specifies the file path for the Annoy index.\r\n\r\n- **`chunk_size`**: \r\n  - **Type**: `int`\r\n  - **Description**: The maximum number of characters in each text chunk after splitting. This parameter ensures that the chunks are small enough to be processed efficiently but large enough to maintain context. The default value is `1000` characters.\r\n\r\n- **`chunk_overlap`**: \r\n  - **Type**: `int`\r\n  - **Description**: The number of overlapping characters between consecutive chunks. Overlap helps to maintain context across chunks, especially when important information might be split between two chunks. The default overlap is `100` characters.\r\n\r\n#### Return Values:\r\n\r\n- **`vectorstore`**: \r\n  - **Type**: Depends on `vectorstore_method` (`Chroma`, `FAISS`, or `Annoy`)\r\n  - **Description**: The vector store object containing the embeddings for the text chunks. This vector store is saved in the specified directory (`vectorstore_directory`) and can be used for retrieval tasks.\r\n\r\n- **`docs_recursive`**: \r\n  - **Type**: `List[Document]`\r\n  - **Description**: A list of document chunks after recursive splitting. Each chunk is an instance of the `Document` class, containing both the content and metadata such as source, title, and other relevant information from the original DataFrame.\r\n\r\n### 3. Build a RAG Chain\r\n\r\nIntegrate the data and vector store into a Retrieval-Augmented Generation (RAG) chain.\r\n\r\n```python\r\nfrom ragflowchain import create_rag_chain\r\n\r\n# Create the RAG chain\r\nrag_chain = create_rag_chain(\r\n    llm=YourLanguageModel(),  # Replace with your LLM instance\r\n    vector_database_directory=\"data/chroma.db\",\r\n    method='Chroma',  # Choose 'Chroma', 'FAISS', or 'Annoy'\r\n    embedding_function=None,  # Optional, defaults to SentenceTransformerEmbeddings\r\n    system_prompt=\"This is a system prompt.\",  # Optional: Customize your system prompt\r\n    chat_history_prompt=\"This is a chat history prompt.\",  # Optional: Customize your chat history prompt\r\n    tavily_search=\"YourTavilyAPIKey\"  # Optional: Replace with your Tavily API key or TavilySearchResults instance\r\n)\r\n```\r\n\r\n#### Explanation of `create_rag_chain` Arguments:\r\n\r\n- **`llm`**: \r\n  - **Type**: Language model instance\r\n  - **Description**: The language model that will be used in the RAG chain. This could be an instance of GPT-3 or any other compatible model.\r\n\r\n- **`vector_database_directory`**: \r\n  - **Type**: `str`\r\n  - **Description**: The directory where the vector store is located. The vector store contains the embeddings generated from the data.\r\n\r\n- **`method`**: \r\n  - **Type**: `str`\r\n  - **Description**: The method to use for the vector store. Options include:\r\n    - `'Chroma'`: A flexible and persistent vector store that is saved to disk.\r\n    - `'FAISS'`: High-performance, in-memory or disk-based approximate nearest neighbor search.\r\n    - `'Annoy'`: Lightweight, memory-efficient approximate nearest neighbor search.\r\n\r\n- **`embedding_function`**: \r\n  - **Type**: (Optional) A function or model\r\n  - **Description**: The function or model used to generate embeddings during retrieval. Defaults to `SentenceTransformerEmbeddings` if not provided.\r\n\r\n- **`system_prompt`**: \r\n  - **Type**: `str`\r\n  - **Description**: A prompt given to the language model to guide its responses. This could include instructions or context specific to the application. If set to `None`, a default system prompt will be used.\r\n\r\n- **`chat_history_prompt`**: \r\n  - **Type**: `str`\r\n  - **Description**: A prompt template that incorporates the chat history, helping the model maintain context across multiple interactions. If set to `None`, a default prompt for contextualizing questions will be used.\r\n\r\n- **`tavily_search`**: \r\n  - **Type**: `str` or `TavilySearchResults` instance (Optional)\r\n  - **Description**: This argument allows you to integrate real-time web search results into your RAG chain. You can provide either your Tavily API key as a string or an instance of `TavilySearchResults`. If provided, the chain will include up-to-date web search results in its responses.\r\n\r\n#### Return Values:\r\n\r\n- **`rag_chain`**: \r\n  - **Type**: `RunnableWithMessageHistory`\r\n  - **Description**: The RAG chain object that can be used to process user inputs and generate context-aware responses by combining retrieval and generative capabilities.\r\n\r\n### 4. Run the RAG Chain Using `invoke`\r\n\r\n```python\r\n# Example usage with invoke method\r\nresult = rag_chain.invoke(\r\n    {\"input\": \"Your question here\"}, \r\n    config={\r\n        \"configurable\": {\"session_id\": \"user123\"}\r\n    }\r\n)\r\n\r\nprint(result[\"answer\"])\r\n```\r\n\r\n#### Explanation of `invoke` Usage:\r\n\r\n- **`invoke`**: This method is used to trigger the execution of the RAG chain. It\u2019s preferred over `run` when working with configurable settings or when `invoke` is the designated method in the LangChain framework you\u2019re using.\r\n\r\n- **Input Dictionary**: The user\u2019s question or input is passed as a dictionary with the key `\"input\"`.\r\n\r\n- **`config` Dictionary**: Additional configurations can be passed using the `config` dictionary. Here, `\"configurable\": {\"session_id\": \"user123\"}` sets a session ID, which is useful for tracking the conversation history across multiple interactions.\r\n\r\n#### Return Values:\r\n\r\n- **`result`**: \r\n  - **Type**: `dict`\r\n  - **Description**: A dictionary containing the model's response. The key `\"answer\"` contains the generated response to the user's input, while other keys might include additional metadata depending on the RAG chain configuration.\r\n\r\n## Detailed Explanation of Function Arguments\r\n\r\n### 1. `data_loader`\r\n\r\n```python\r\ndata_loader(online_sources=None, local_sources=None, chunk_size=1000)\r\n```\r\n\r\n- **`online_sources`**: A dictionary specifying the online sources from which to fetch data. The keys represent the type of source, and the values are tuples containing the necessary parameters.\r\n  - **`books`**: A tuple (`api_key`, `query`, `max_results`) for fetching books from Google Books API.\r\n  - **`news_articles`**: A tuple (`api_key`, `query`, `page_size`, `max_pages`) for fetching news articles from NewsAPI.\r\n  - **`youtube`**: A tuple (`query`, `api_key`, `max_results`) for fetching YouTube videos.\r\n  - **`websites`**: A list of URLs to fetch content from websites.\r\n\r\n- **`local_sources`**: A list of paths to local files (PDF, PPT, DOCX, TXT). The function loads and processes these documents into manageable chunks.\r\n\r\n- **`chunk_size`**: The size of each text chunk, in characters. Default is `1000`. This determines how the text content is split, ensuring that chunks are neither too large nor too small.\r\n\r\n### 2. `create_database`\r\n\r\n```python\r\ncreate_database(df, page_content, embedding_function=None, vectorstore_method='Chroma', vectorstore_directory=\"data/vectorstore.db\", chunk_size=1000, chunk_overlap=100)\r\n```\r\n\r\n- **`df`**: A pandas DataFrame containing the processed data. This should include columns like `content`, `source`, etc.\r\n\r\n- **`page_content`**: The name of the column in the DataFrame that contains the main text content to be embedded.\r\n\r\n- **`embedding_function`**: (Optional) A function or model used to generate embeddings. Defaults to using `SentenceTransformerEmbeddings`.\r\n\r\n- **`vectorstore_method`**: The method used for the vector store. Options include:\r\n  - `'Chroma'`: For a flexible and persistent vector store saved to disk.\r\n  - `'FAISS'`: For high-performance, in-memory, or disk-based approximate nearest neighbor search.\r\n  - `'Annoy'`: For a lightweight, memory-efficient approximate nearest neighbor search.\r\n\r\n- **`vectorstore_directory`**: The directory where the vector store will be saved. The default is `\"data/vectorstore.db\"`, but the exact usage depends on the `vectorstore_method`:\r\n  - For `'Chroma'`, this specifies the directory where the database is stored.\r\n  - For `'FAISS'`, this is the path to save the FAISS index file.\r\n  - For `'Annoy'`, this specifies the file path for the Annoy index.\r\n\r\n- **`chunk_size`**: The size of each text chunk, in characters, used during text splitting.\r\n\r\n- **`chunk_overlap`**: The overlap between consecutive chunks, to maintain context. Default is `100`.\r\n\r\n### 3. `create_rag_chain`\r\nHere's the updated version of your code snippet and explanation to include the `tavily_search` argument and adjust the descriptions accordingly:\r\n\r\n```python\r\ncreate_rag_chain(llm, vector_database_directory, method='Chroma', embedding_function=None, system_prompt=None, chat_history_prompt=None, tavily_search=None)\r\n```\r\n\r\n- **`llm`**: The language model that will be used in the RAG chain. This could be an instance of GPT-3 or any other compatible model.\r\n\r\n- **`vector_database_directory`**: The directory where the vector database is located.\r\n\r\n- **`method`**: The method used for the vector store. Options include:\r\n  - `'Chroma'`: For a flexible and persistent vector store saved to disk.\r\n  - `'FAISS'`: For high-performance, in-memory, or disk-based approximate nearest neighbor search.\r\n  - `'Annoy'`: For a lightweight, memory-efficient approximate nearest neighbor search.\r\n\r\n- **`embedding_function`**: (Optional) The function or model used to generate embeddings during retrieval. If not provided, it defaults to using `SentenceTransformerEmbeddings`.\r\n\r\n- **`system_prompt`**: (Optional) A prompt given to the language model to guide its responses. This could include instructions or context specific to the application. If set to `None`, a default system prompt will be used.\r\n\r\n- **`chat_history_prompt`**: (Optional) A prompt template that incorporates the chat history, helping the model maintain context across multiple interactions. If set to `None`, a default prompt for contextualizing questions will be used.\r\n\r\n- **`tavily_search`**: (Optional) This argument allows you to integrate real-time web search results into your RAG chain. You can provide either your Tavily API key as a string or an instance of `TavilySearchResults`. If provided, the chain will include up-to-date web search results in its responses.\r\n\r\n### 4. `rag_chain.invoke`\r\n\r\n```python\r\nrag_chain.invoke({\"input\": question}, config={\"configurable\": {\"session_id\": \"any\"}})\r\n```\r\n\r\n- **`input`**: The user\u2019s input or question, passed as a dictionary with the key `\"input\"`. This is the prompt or query that the model will process.\r\n\r\n- **`config`**: A dictionary containing additional configuration settings. The `\"configurable\"` key allows you to set a session ID or other parameters that influence how the chain processes the input.\r\n\r\n## Documentation\r\n\r\nFor more detailed documentation, including advanced usage and customization options, please visit the [GitHub repository](https://github.com/knowusuboaky/RAGFlowChain).\r\n\r\n## License\r\n\r\nRAGFlowChain is licensed under the MIT License. See the [LICENSE](LICENSE) file for more information.\r\n\r\n## Acknowledgements\r\n\r\nRAGFlowChain is built on top of powerful tools like [LangChain](https://github.com/hwchase17/langchain) and [Chroma](https://github.com/chroma-core/chroma). We thank the open-source community for their contributions.\r\n\r\nMade with \u2764\ufe0f by Kwadwo Daddy Nyame Owusu - Boakye.\r\n\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A comprehensive toolkit for building Retrieval-Augmented Generation (RAG) pipelines, including data loading, vector database creation, retrieval, and chain management.",
    "version": "0.5.1",
    "project_urls": {
        "Homepage": "https://github.com/knowusuboaky/RAGFlowChain"
    },
    "split_keywords": [
        "rag",
        " retrieval-augmented generation",
        " vector database",
        " data fetching",
        " generative ai",
        " ai",
        " machine learning",
        " ml",
        " genai",
        " langchain",
        " data processing",
        " information retrieval",
        " nlp",
        " natural language processing",
        " data science",
        " python",
        " text mining",
        " document processing",
        " faiss",
        " annoy",
        " chroma",
        " pytube",
        " nltk",
        " transformers"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "44ad320ac0e41b180f45a65c5181ce0d7d3bfd60992ff237829986a09f082312",
                "md5": "8215f067f6c0a7ef7ab99f566a4619ec",
                "sha256": "d5084d3ede7093a4688a113e074bcf9fb2f60697a53bbffe5b5e817de8a21072"
            },
            "downloads": -1,
            "filename": "RAGFlowChain-0.5.1.tar.gz",
            "has_sig": false,
            "md5_digest": "8215f067f6c0a7ef7ab99f566a4619ec",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 8412,
            "upload_time": "2024-10-04T18:17:07",
            "upload_time_iso_8601": "2024-10-04T18:17:07.118793Z",
            "url": "https://files.pythonhosted.org/packages/44/ad/320ac0e41b180f45a65c5181ce0d7d3bfd60992ff237829986a09f082312/RAGFlowChain-0.5.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-04 18:17:07",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "knowusuboaky",
    "github_project": "RAGFlowChain",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "ragflowchain"
}
        
Elapsed time: 0.33821s