RGAST


NameRGAST JSON
Version 0.0.2 PyPI version JSON
download
home_pagehttps://github.com/GYQ-form/RGAST
SummaryRelational Graph Attention Network for Spatial Transcriptome Analysis
upload_time2024-08-24 02:31:28
maintainerNone
docs_urlNone
authorYuqiao Gong
requires_pythonNone
licenseMIT
keywords spatial transcriptomic rgat representation learning spatial domain identification
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # RGAST

RGAST: Relational Graph Attention Network for Spatial Transcriptome Analysis [[paper]](https://doi.org/10.1101/2024.08.09.607420)

This document will help you easily go through the RGAST model.

![fig1_00](https://github.com/GYQ-form/RGAST/assets/79566479/fe0655dc-2318-44e0-92bf-0aea3aad7163)

## Installation

To install our package, run

```bash
pip install RGAST
```

You can also clone the repo and install it in editable mode:

```bash
git clone https://github.com/GYQ-form/RGAST.git
cd RGAST
pip install -e .
```

## Usage

RGAST (Relational Graph Attention network for Spatial Transcriptome analysis) constructs a relational graph attention network to learn the representation of each spot in the spatial transcriptome data. Plus the attention mechanism, RGAST considers both gene expression similarity and spatial neighbor relationships in constructing the graph network, enabling a more comprehensive and flexible representation of the spatial transcriptome data. RGAST can be used in many ST analysis:

- spatial domain identification
- cell trajectory inference
- spatially variable gene (SVG) detection
- uncover spatially resolved cell-cell interactions
- reveal intricate 3D spatial patterns across multiple sections of ST data

## Tutorial

We have prepared several basic tutorials  in https://github.com/GYQ-form/RGAST/tree/main/tutorial. You can quickly hands on RGAST by going through these tutorials. Model parameters trained in our study are also released in https://github.com/GYQ-form/RGAST/tree/main/model_path.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/GYQ-form/RGAST",
    "name": "RGAST",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "spatial transcriptomic, RGAT, representation learning, spatial domain identification",
    "author": "Yuqiao Gong",
    "author_email": "gyq123@sjtu.edu.cn",
    "download_url": "https://files.pythonhosted.org/packages/09/23/f55cd9644cfc510ff898fb89d9cd5854dc4a644116e19302a342e1c55582/RGAST-0.0.2.tar.gz",
    "platform": null,
    "description": "# RGAST\n\nRGAST: Relational Graph Attention Network for Spatial Transcriptome Analysis [[paper]](https://doi.org/10.1101/2024.08.09.607420)\n\nThis document will help you easily go through the RGAST model.\n\n![fig1_00](https://github.com/GYQ-form/RGAST/assets/79566479/fe0655dc-2318-44e0-92bf-0aea3aad7163)\n\n## Installation\n\nTo install our package, run\n\n```bash\npip install RGAST\n```\n\nYou can also clone the repo and install it in editable mode:\n\n```bash\ngit clone https://github.com/GYQ-form/RGAST.git\ncd RGAST\npip install -e .\n```\n\n## Usage\n\nRGAST (Relational Graph Attention network for Spatial Transcriptome analysis) constructs a relational graph attention network to learn the representation of each spot in the spatial transcriptome data. Plus the attention mechanism, RGAST considers both gene expression similarity and spatial neighbor relationships in constructing the graph network, enabling a more comprehensive and flexible representation of the spatial transcriptome data. RGAST can be used in many ST analysis:\n\n- spatial domain identification\n- cell trajectory inference\n- spatially variable gene (SVG) detection\n- uncover spatially resolved cell-cell interactions\n- reveal intricate 3D spatial patterns across multiple sections of ST data\n\n## Tutorial\n\nWe have prepared several basic tutorials  in https://github.com/GYQ-form/RGAST/tree/main/tutorial. You can quickly hands on RGAST by going through these tutorials. Model parameters trained in our study are also released in https://github.com/GYQ-form/RGAST/tree/main/model_path.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Relational Graph Attention Network for Spatial Transcriptome Analysis",
    "version": "0.0.2",
    "project_urls": {
        "Homepage": "https://github.com/GYQ-form/RGAST"
    },
    "split_keywords": [
        "spatial transcriptomic",
        " rgat",
        " representation learning",
        " spatial domain identification"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2ad2cd84f49e0dfb75d2a214389fece1cbc87302256221218644272f3c7c5c26",
                "md5": "91f649e61151f3fb3b11a83d8192ba24",
                "sha256": "32844b36ef7066b5a3154f33c5f5755568534c291015f7085b4262d6651683fd"
            },
            "downloads": -1,
            "filename": "RGAST-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "91f649e61151f3fb3b11a83d8192ba24",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 13910,
            "upload_time": "2024-08-24T02:31:26",
            "upload_time_iso_8601": "2024-08-24T02:31:26.689561Z",
            "url": "https://files.pythonhosted.org/packages/2a/d2/cd84f49e0dfb75d2a214389fece1cbc87302256221218644272f3c7c5c26/RGAST-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0923f55cd9644cfc510ff898fb89d9cd5854dc4a644116e19302a342e1c55582",
                "md5": "1fc3f3f378f922136a71be360c02d16f",
                "sha256": "2597272c29517f7b7a3193b28b22770bc770e73a2c1c86aea15dc6a96574e5cb"
            },
            "downloads": -1,
            "filename": "RGAST-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "1fc3f3f378f922136a71be360c02d16f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 13737,
            "upload_time": "2024-08-24T02:31:28",
            "upload_time_iso_8601": "2024-08-24T02:31:28.458111Z",
            "url": "https://files.pythonhosted.org/packages/09/23/f55cd9644cfc510ff898fb89d9cd5854dc4a644116e19302a342e1c55582/RGAST-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-24 02:31:28",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "GYQ-form",
    "github_project": "RGAST",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "rgast"
}
        
Elapsed time: 0.50579s