RIM-interpret


NameRIM-interpret JSON
Version 0.0.5 PyPI version JSON
download
home_page
SummaryInterpretability metrics for machine learning models
upload_time2023-08-21 04:01:17
maintainer
docs_urlNone
author
requires_python>=3.7
license
keywords interpretability lime machine learning modelling omics permutation feature importance rim shap
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # RIM-interpret

RIM-interpret is a Python package designed to enhance the interpretability of machine learning models.

## Installation

Use pip to install RIM-interpret.

## Usage

RIM-interpret is compatible with most linear and tree-based regression models. In the future, we hope to expand the compatibility to inlcude more regression models and an option for classification tasks.

```python
import RIM_interpret

import sklearn
import pandas as pd
from sklearn import datasets
from sklearn.linear_model import ElasticNet
from sklearn.model_selection import train_test_split


#Import example dataset and convert to pandas df
data = datasets.load_diabetes()
df = pd.DataFrame(data.data, columns=data.feature_names)
df['target'] = data.target
print(df.head())
#Predictors
X=df.drop("target", axis=1)
#Target
y=df["target"]

#Train/test split
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.3, random_state=42)


#Train elastic net regression model
en_model = ElasticNet(alpha = 0.1, l1_ratio = 0.5)
fit_en = en_model.fit(X_train, y_train)
#Create dataframes to test
pfi_df_en = RIM_interpret.get_pfi(fit=fit_en, X_test=X_test, y_test=y_test)
shap_df_en = RIM_interpret.get_shap(fit=fit_en, X_test=X_test, model_type="Linear")
lime_df_en = RIM_interpret.get_lime(fit=fit_en, X_train=X_train, X_test=X_test)
inter_df_en = RIM_interpret.get_inter(fit=fit_en, X_train=X_train, X_test=X_test, y_test=y_test model_type="Linear")

```

## Contributing

Please create a GitHub issue for any bugs or questions (https://github.com/xloffree/RIM-interpret).

## License

[MIT](https://choosealicense.com/licenses/mit/)
            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "RIM-interpret",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "interpretability,lime,machine learning,modelling,omics,permutation feature importance,rim,shap",
    "author": "",
    "author_email": "Xavier Loffree <Xavix500@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/25/bb/d7179e7cc428e3d715bc7130a7bef264fe6446d3ac8d0e6a95a7171e7ee4/rim_interpret-0.0.5.tar.gz",
    "platform": null,
    "description": "# RIM-interpret\n\nRIM-interpret is a Python package designed to enhance the interpretability of machine learning models.\n\n## Installation\n\nUse pip to install RIM-interpret.\n\n## Usage\n\nRIM-interpret is compatible with most linear and tree-based regression models. In the future, we hope to expand the compatibility to inlcude more regression models and an option for classification tasks.\n\n```python\nimport RIM_interpret\n\nimport sklearn\nimport pandas as pd\nfrom sklearn import datasets\nfrom sklearn.linear_model import ElasticNet\nfrom sklearn.model_selection import train_test_split\n\n\n#Import example dataset and convert to pandas df\ndata = datasets.load_diabetes()\ndf = pd.DataFrame(data.data, columns=data.feature_names)\ndf['target'] = data.target\nprint(df.head())\n#Predictors\nX=df.drop(\"target\", axis=1)\n#Target\ny=df[\"target\"]\n\n#Train/test split\nX_train, X_test, y_train, y_test = train_test_split(\n    X, y, test_size=0.3, random_state=42)\n\n\n#Train elastic net regression model\nen_model = ElasticNet(alpha = 0.1, l1_ratio = 0.5)\nfit_en = en_model.fit(X_train, y_train)\n#Create dataframes to test\npfi_df_en = RIM_interpret.get_pfi(fit=fit_en, X_test=X_test, y_test=y_test)\nshap_df_en = RIM_interpret.get_shap(fit=fit_en, X_test=X_test, model_type=\"Linear\")\nlime_df_en = RIM_interpret.get_lime(fit=fit_en, X_train=X_train, X_test=X_test)\ninter_df_en = RIM_interpret.get_inter(fit=fit_en, X_train=X_train, X_test=X_test, y_test=y_test model_type=\"Linear\")\n\n```\n\n## Contributing\n\nPlease create a GitHub issue for any bugs or questions (https://github.com/xloffree/RIM-interpret).\n\n## License\n\n[MIT](https://choosealicense.com/licenses/mit/)",
    "bugtrack_url": null,
    "license": "",
    "summary": "Interpretability metrics for machine learning models",
    "version": "0.0.5",
    "project_urls": {
        "Bug Tracker": "https://github.com/xloffree/RIM-interpret/issues",
        "Homepage": "https://github.com/xloffree/RIM-interpret"
    },
    "split_keywords": [
        "interpretability",
        "lime",
        "machine learning",
        "modelling",
        "omics",
        "permutation feature importance",
        "rim",
        "shap"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "348f27d4b90496de11a10b54a7a1f70f270b02c4a9f8c40a20437bd1a597f1e6",
                "md5": "6feb2770d463171fa28cfd9df0b28034",
                "sha256": "e4ea1cf7563cfb0e80fd8c3cebb7353a66e41333129a64df48f50d1acaf34f90"
            },
            "downloads": -1,
            "filename": "rim_interpret-0.0.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6feb2770d463171fa28cfd9df0b28034",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 4586,
            "upload_time": "2023-08-21T04:01:16",
            "upload_time_iso_8601": "2023-08-21T04:01:16.270267Z",
            "url": "https://files.pythonhosted.org/packages/34/8f/27d4b90496de11a10b54a7a1f70f270b02c4a9f8c40a20437bd1a597f1e6/rim_interpret-0.0.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "25bbd7179e7cc428e3d715bc7130a7bef264fe6446d3ac8d0e6a95a7171e7ee4",
                "md5": "636ad18028328a7417b0027ec132f55b",
                "sha256": "08f36bef5a6134ffbfc2e11a414b4485a888a092ed007aa1082df7aab7632687"
            },
            "downloads": -1,
            "filename": "rim_interpret-0.0.5.tar.gz",
            "has_sig": false,
            "md5_digest": "636ad18028328a7417b0027ec132f55b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 4821,
            "upload_time": "2023-08-21T04:01:17",
            "upload_time_iso_8601": "2023-08-21T04:01:17.780226Z",
            "url": "https://files.pythonhosted.org/packages/25/bb/d7179e7cc428e3d715bc7130a7bef264fe6446d3ac8d0e6a95a7171e7ee4/rim_interpret-0.0.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-21 04:01:17",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "xloffree",
    "github_project": "RIM-interpret",
    "github_not_found": true,
    "lcname": "rim-interpret"
}
        
Elapsed time: 0.17368s