RL-ADN


NameRL-ADN JSON
Version 0.1.3 PyPI version JSON
download
home_pagehttps://github.com/ShengrenHou/RL-ADN
SummaryRL-ADN: A Benchmark Framework for DRL-based Battery Energy Arbitrage in Distribution Networks
upload_time2023-10-05 07:22:56
maintainer
docs_urlNone
authorHou Shengren, Gao Shuyi, Pedro Vargara
requires_python
licenseMIT
keywords drl energy arbitrage
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # RL-ADN: A Benchmark Framework for DRL-based Battery Energy Arbitrage in Distribution Networks



**RL-ADN** is **the first open-source framework** designed to revolutionize DRL-based battery energy arbitrage in distribution networks. By abstracting distribution network dynamics and offering a modular structure, RL-ADN paves the way for modeling diverse energy arbitrage tasks. 

## Features

- **Versatile Benchmarking**: Model diverse energy arbitrage tasks with full flexibility.
- **Laurent Power Flow**: Over 10 times faster computational speed compared to traditional methods.
- **Seamless Transition**: Designed for both simulated environments and real-world applications.
- **Open-source**: Easily accessible for modifications, customizations, and further research.


## Outline

  - [Overview](#overview)
  - [Documentation](#documentation)
  - [File Structure](#file-structure)
  - [Installation](#installation)
  - [Tutorials](#tutorials)
  - [Publications](#publications)
  - [Citing FinRL](#citing-finrl)
  - [LICENSE](#license)
  
## documentation 
under developing 

## File Structure

The main folder **RL-ADN** is shown below

```
└─power_network_rl
    │  README.md
    │  requirements.txt
    │  setup.py
    │  __init__.py
    │
    ├─benckmark_algorithms
    │      Optimality_pyomo.py
    │      __init__.py
    │
    ├─data_manager
    │  │  data_manager.py
    │  │  __init__.py
    │
    ├─data_sources
    │  ├─network_data
    │  │  │  __init__.py
    │  │  │
    │  │  ├─node_123
    │  │  │      Lines_123.csv
    │  │  │      Nodes_123.csv
    │  │  │
    │  │  ├─node_25
    │  │  │      Lines_25.csv
    │  │  │      Nodes_25.csv
    │  │  │
    │  │  ├─node_34
    │  │  │      Lines_34.csv
    │  │  │      Nodes_34.csv
    │  │  │
    │  │  └─node_69
    │  │          Lines_69.csv
    │  │          Nodes_69.csv
    │  │
    │  └─time_series_data
    │          123_node_time_series.csv
    │          25_node_time_series.csv
    │          34_node_time_series.csv
    │          69_node_time_series.csv
    │
    ├─docs
    ├─DRL_algorithms
    │  │  Agent.py
    │  │  DDPG.py
    │  │  PPO.py
    │  │  SAC.py
    │  │  TD3.py
    │  │  utility.py
    │  │  __init__.py
    │
    │
    ├─environments
    │  │  Component_Battery.py
    │  │  Environment_Integrated.py
    │  │  env_config.json
    │  │  gym_env_create_t.py
    │  │  __init__.py
    │
    ├─example
    │      customize_env.py
    │      training_DDPG.py
    │
    ├─tests
    │      123_node_network_powerflow_test.py
    │      25_node_network_powerflow_test.py
    │      69_node_network_powerflow_test.py
    │      test_comparison_power_flow.py
    │
    ├─utility
    │  │  gpu_interface.py
    │  │  grid.py
    │  │  Not_converge_Power_Flow.py
    │  │  numbarize.py
    │  │  Power_Flow.py
    │  │  utils.py
    │  │  __init__.py
    │  │



```

## Installation
To install RL-ADN, simply run:

```
pip install RL-ADN
```
Or install from git
```
git clone https://github.com/shengrenhou/RL-ADN.git
cd your repository
pip install -e .

```
Or install from local, if you have download the source code

```
cd to the path contains setup.py
python setup.py install

```


## Status Update
<details><summary><b>Version History</b> <i>[click to expand]</i></summary>
<div>

* 2023-09-27
  	0.1: Beta version
</div>
</details>

## Tutorials
In example folder, training_DDPG.ipynb shows a tutorial for training DDPG agent using RL-ADN step by step. 
customize_env.py shows a simple tutorial for users customize their own environment by using RL-ADN

## Future work 
Develop a data augmentation functin by implementing a data generator for time-series data used for training algorithms.

## Publications


## Citing RL-ADN


## Contributing




## LICENSE

MIT License

**Disclaimer: We are sharing codes for academic purpose under the MIT education license. Nothing herein is financial advice, and NOT a recommendation to trade real money. Please use common sense and always first consult a professional before trading or investing.**

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/ShengrenHou/RL-ADN",
    "name": "RL-ADN",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "DRL energy arbitrage",
    "author": "Hou Shengren, Gao Shuyi, Pedro Vargara",
    "author_email": "houshengren97@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/1e/6a/e39591bd69657991fa21cc054354eb4beb17089ff3fd17f203359498d3ca/RL-ADN-0.1.3.tar.gz",
    "platform": null,
    "description": "# RL-ADN: A Benchmark Framework for DRL-based Battery Energy Arbitrage in Distribution Networks\r\n\r\n\r\n\r\n**RL-ADN** is **the first open-source framework** designed to revolutionize DRL-based battery energy arbitrage in distribution networks. By abstracting distribution network dynamics and offering a modular structure, RL-ADN paves the way for modeling diverse energy arbitrage tasks. \r\n\r\n## Features\r\n\r\n- **Versatile Benchmarking**: Model diverse energy arbitrage tasks with full flexibility.\r\n- **Laurent Power Flow**: Over 10 times faster computational speed compared to traditional methods.\r\n- **Seamless Transition**: Designed for both simulated environments and real-world applications.\r\n- **Open-source**: Easily accessible for modifications, customizations, and further research.\r\n\r\n\r\n## Outline\r\n\r\n  - [Overview](#overview)\r\n  - [Documentation](#documentation)\r\n  - [File Structure](#file-structure)\r\n  - [Installation](#installation)\r\n  - [Tutorials](#tutorials)\r\n  - [Publications](#publications)\r\n  - [Citing FinRL](#citing-finrl)\r\n  - [LICENSE](#license)\r\n  \r\n## documentation \r\nunder developing \r\n\r\n## File Structure\r\n\r\nThe main folder **RL-ADN** is shown below\r\n\r\n```\r\n\u2514\u2500power_network_rl\r\n    \u2502  README.md\r\n    \u2502  requirements.txt\r\n    \u2502  setup.py\r\n    \u2502  __init__.py\r\n    \u2502\r\n    \u251c\u2500benckmark_algorithms\r\n    \u2502      Optimality_pyomo.py\r\n    \u2502      __init__.py\r\n    \u2502\r\n    \u251c\u2500data_manager\r\n    \u2502  \u2502  data_manager.py\r\n    \u2502  \u2502  __init__.py\r\n    \u2502\r\n    \u251c\u2500data_sources\r\n    \u2502  \u251c\u2500network_data\r\n    \u2502  \u2502  \u2502  __init__.py\r\n    \u2502  \u2502  \u2502\r\n    \u2502  \u2502  \u251c\u2500node_123\r\n    \u2502  \u2502  \u2502      Lines_123.csv\r\n    \u2502  \u2502  \u2502      Nodes_123.csv\r\n    \u2502  \u2502  \u2502\r\n    \u2502  \u2502  \u251c\u2500node_25\r\n    \u2502  \u2502  \u2502      Lines_25.csv\r\n    \u2502  \u2502  \u2502      Nodes_25.csv\r\n    \u2502  \u2502  \u2502\r\n    \u2502  \u2502  \u251c\u2500node_34\r\n    \u2502  \u2502  \u2502      Lines_34.csv\r\n    \u2502  \u2502  \u2502      Nodes_34.csv\r\n    \u2502  \u2502  \u2502\r\n    \u2502  \u2502  \u2514\u2500node_69\r\n    \u2502  \u2502          Lines_69.csv\r\n    \u2502  \u2502          Nodes_69.csv\r\n    \u2502  \u2502\r\n    \u2502  \u2514\u2500time_series_data\r\n    \u2502          123_node_time_series.csv\r\n    \u2502          25_node_time_series.csv\r\n    \u2502          34_node_time_series.csv\r\n    \u2502          69_node_time_series.csv\r\n    \u2502\r\n    \u251c\u2500docs\r\n    \u251c\u2500DRL_algorithms\r\n    \u2502  \u2502  Agent.py\r\n    \u2502  \u2502  DDPG.py\r\n    \u2502  \u2502  PPO.py\r\n    \u2502  \u2502  SAC.py\r\n    \u2502  \u2502  TD3.py\r\n    \u2502  \u2502  utility.py\r\n    \u2502  \u2502  __init__.py\r\n    \u2502\r\n    \u2502\r\n    \u251c\u2500environments\r\n    \u2502  \u2502  Component_Battery.py\r\n    \u2502  \u2502  Environment_Integrated.py\r\n    \u2502  \u2502  env_config.json\r\n    \u2502  \u2502  gym_env_create_t.py\r\n    \u2502  \u2502  __init__.py\r\n    \u2502\r\n    \u251c\u2500example\r\n    \u2502      customize_env.py\r\n    \u2502      training_DDPG.py\r\n    \u2502\r\n    \u251c\u2500tests\r\n    \u2502      123_node_network_powerflow_test.py\r\n    \u2502      25_node_network_powerflow_test.py\r\n    \u2502      69_node_network_powerflow_test.py\r\n    \u2502      test_comparison_power_flow.py\r\n    \u2502\r\n    \u251c\u2500utility\r\n    \u2502  \u2502  gpu_interface.py\r\n    \u2502  \u2502  grid.py\r\n    \u2502  \u2502  Not_converge_Power_Flow.py\r\n    \u2502  \u2502  numbarize.py\r\n    \u2502  \u2502  Power_Flow.py\r\n    \u2502  \u2502  utils.py\r\n    \u2502  \u2502  __init__.py\r\n    \u2502  \u2502\r\n\r\n\r\n\r\n```\r\n\r\n## Installation\r\nTo install RL-ADN, simply run:\r\n\r\n```\r\npip install RL-ADN\r\n```\r\nOr install from git\r\n```\r\ngit clone https://github.com/shengrenhou/RL-ADN.git\r\ncd your repository\r\npip install -e .\r\n\r\n```\r\nOr install from local, if you have download the source code\r\n\r\n```\r\ncd to the path contains setup.py\r\npython setup.py install\r\n\r\n```\r\n\r\n\r\n## Status Update\r\n<details><summary><b>Version History</b> <i>[click to expand]</i></summary>\r\n<div>\r\n\r\n* 2023-09-27\r\n  \t0.1: Beta version\r\n</div>\r\n</details>\r\n\r\n## Tutorials\r\nIn example folder, training_DDPG.ipynb shows a tutorial for training DDPG agent using RL-ADN step by step. \r\ncustomize_env.py shows a simple tutorial for users customize their own environment by using RL-ADN\r\n\r\n## Future work \r\nDevelop a data augmentation functin by implementing a data generator for time-series data used for training algorithms.\r\n\r\n## Publications\r\n\r\n\r\n## Citing RL-ADN\r\n\r\n\r\n## Contributing\r\n\r\n\r\n\r\n\r\n## LICENSE\r\n\r\nMIT License\r\n\r\n**Disclaimer: We are sharing codes for academic purpose under the MIT education license. Nothing herein is financial advice, and NOT a recommendation to trade real money. Please use common sense and always first consult a professional before trading or investing.**\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "RL-ADN: A Benchmark Framework for DRL-based Battery Energy Arbitrage in Distribution Networks",
    "version": "0.1.3",
    "project_urls": {
        "Homepage": "https://github.com/ShengrenHou/RL-ADN"
    },
    "split_keywords": [
        "drl",
        "energy",
        "arbitrage"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e90dd4468d2479456e8280d27b6e197417bfadec196e58d2a5fe615f1b6d9226",
                "md5": "e6561fe69006218b27c5fa54cf6a6da4",
                "sha256": "c69911c78e20151e5c14fe77d9e77474f0ec4f86daad8a3b84426fc3bc5f5e7e"
            },
            "downloads": -1,
            "filename": "RL_ADN-0.1.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e6561fe69006218b27c5fa54cf6a6da4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 12749662,
            "upload_time": "2023-10-05T07:22:53",
            "upload_time_iso_8601": "2023-10-05T07:22:53.751987Z",
            "url": "https://files.pythonhosted.org/packages/e9/0d/d4468d2479456e8280d27b6e197417bfadec196e58d2a5fe615f1b6d9226/RL_ADN-0.1.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1e6ae39591bd69657991fa21cc054354eb4beb17089ff3fd17f203359498d3ca",
                "md5": "3093c4268fe1cbb3b300a194e5de4703",
                "sha256": "dbb332257ca9fef9e4619e849ff5dfcbccddd47e67ed4abaa2fc4f3974902c4e"
            },
            "downloads": -1,
            "filename": "RL-ADN-0.1.3.tar.gz",
            "has_sig": false,
            "md5_digest": "3093c4268fe1cbb3b300a194e5de4703",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 12691868,
            "upload_time": "2023-10-05T07:22:56",
            "upload_time_iso_8601": "2023-10-05T07:22:56.368742Z",
            "url": "https://files.pythonhosted.org/packages/1e/6a/e39591bd69657991fa21cc054354eb4beb17089ff3fd17f203359498d3ca/RL-ADN-0.1.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-05 07:22:56",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ShengrenHou",
    "github_project": "RL-ADN",
    "github_not_found": true,
    "lcname": "rl-adn"
}
        
Elapsed time: 0.17095s