A Python library for manipulating matrices while boiling your RAM.(I promise the core functions are actually optimized and WONT boil your RAM...you still have the option though)
### Key Functions:
- **row_reduce**: Perform row reduction to echelon form.
- **inverse**: Calculate the inverse of a matrix.
- **determinant**: Calculate the determinant of a matrix.
- **LU_factorize**: Perform LU factorization on a matrix.
- **matrix_multiply**: Multiply two matrices.
- **dot**: Perform dot product on matrices or vectors.
- **add**: Add two matrices together.
- **subtract**: Subtract one matrix from another.
- **scale**: Scale a matrix by a constant.
- **cofactor**: Calculate the cofactor matrix.
- **transpose**: Get the transpose of a matrix.
- **flatten**: Flatten a matrix into a 1D list.
- **create_identity**: Create an identity matrix of a given size.
- **print_matrix**: Display a matrix in a readable format.
- **precise_row_reduce**: Perform row reduction with higher precision.
- **inverse_by_rows**: Calculate the inverse using row operations.
- **brute_inverse**: Calculate the inverse using an Adjoint method(Cramer method).
- **laplace_determinant**: Calculate the determinant using Laplace expansion.
- **check_matrix**: Validate if the input is a proper matrix.
- **tell_version**: Get the current version of the package.
Ramtrix is perfect for educational purposes, matrix operations, and small to medium-scale linear algebra tasks. It is designed to be a lightweight alternative to larger libraries like Numpy, with a focus on simplicity and performance.
Raw data
{
"_id": null,
"home_page": null,
"name": "Ramtrix",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "python, matrices, row reduction, linear algebra",
"author": "Ram",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/df/0e/681432245cae21ba55907d16ed0e94f7e4b245e410c90d5d8b392db8a859/Ramtrix-0.1.2.tar.gz",
"platform": null,
"description": "A Python library for manipulating matrices while boiling your RAM.(I promise the core functions are actually optimized and WONT boil your RAM...you still have the option though)\n\n### Key Functions:\n- **row_reduce**: Perform row reduction to echelon form.\n- **inverse**: Calculate the inverse of a matrix.\n- **determinant**: Calculate the determinant of a matrix.\n- **LU_factorize**: Perform LU factorization on a matrix.\n- **matrix_multiply**: Multiply two matrices.\n- **dot**: Perform dot product on matrices or vectors.\n- **add**: Add two matrices together.\n- **subtract**: Subtract one matrix from another.\n- **scale**: Scale a matrix by a constant.\n- **cofactor**: Calculate the cofactor matrix.\n- **transpose**: Get the transpose of a matrix.\n- **flatten**: Flatten a matrix into a 1D list.\n- **create_identity**: Create an identity matrix of a given size.\n- **print_matrix**: Display a matrix in a readable format.\n- **precise_row_reduce**: Perform row reduction with higher precision.\n- **inverse_by_rows**: Calculate the inverse using row operations.\n- **brute_inverse**: Calculate the inverse using an Adjoint method(Cramer method).\n- **laplace_determinant**: Calculate the determinant using Laplace expansion.\n- **check_matrix**: Validate if the input is a proper matrix.\n- **tell_version**: Get the current version of the package.\n\nRamtrix is perfect for educational purposes, matrix operations, and small to medium-scale linear algebra tasks. It is designed to be a lightweight alternative to larger libraries like Numpy, with a focus on simplicity and performance.\n",
"bugtrack_url": null,
"license": null,
"summary": "Ripoff Numpy",
"version": "0.1.2",
"project_urls": null,
"split_keywords": [
"python",
" matrices",
" row reduction",
" linear algebra"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "e79e0aac5b5aa82a5f63b5adf60cac292facb959ca2f5cef38ccd6f56e2cec9a",
"md5": "2515dff043c67bc8d27fa81d132513bb",
"sha256": "1d9b572979b55df7a3af85b77aae153d645d0339c832104be8b402a9cf8d88bc"
},
"downloads": -1,
"filename": "Ramtrix-0.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "2515dff043c67bc8d27fa81d132513bb",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 4713,
"upload_time": "2024-12-27T06:38:36",
"upload_time_iso_8601": "2024-12-27T06:38:36.646908Z",
"url": "https://files.pythonhosted.org/packages/e7/9e/0aac5b5aa82a5f63b5adf60cac292facb959ca2f5cef38ccd6f56e2cec9a/Ramtrix-0.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "df0e681432245cae21ba55907d16ed0e94f7e4b245e410c90d5d8b392db8a859",
"md5": "7fe532bce73daa2855c692fb124d4f7b",
"sha256": "21ccb6967eadfdc48bf67494c5daebd57d8d4c131270c9a10ba568a9ed19431c"
},
"downloads": -1,
"filename": "Ramtrix-0.1.2.tar.gz",
"has_sig": false,
"md5_digest": "7fe532bce73daa2855c692fb124d4f7b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 4492,
"upload_time": "2024-12-27T06:38:38",
"upload_time_iso_8601": "2024-12-27T06:38:38.557904Z",
"url": "https://files.pythonhosted.org/packages/df/0e/681432245cae21ba55907d16ed0e94f7e4b245e410c90d5d8b392db8a859/Ramtrix-0.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-27 06:38:38",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "ramtrix"
}