# RapidUseML
Minimalistic Machine Learning Toolset used for quick training and usage of various models.
One click for training, one click for prediction.
## Usage:
### Basics:
Prepare basic necessities for usage.
```
import RapidUse # Ensure class is imported.
ml = RapidUse.ML() # Create instance of class.
from pandas import read_csv # Get pandas to read CSVs.
```
### Prediction:
Predicts target value(s) based on input data provided, with automated model identification.
Note: ML.prdict(...) checks the folder and all directories within the folder its located in for the relevant model.
```
input_dataset = read_csv("input_dataset.csv") # Load dataset for pred.
target_column = "column_d" # Prediction target.
prediction_set = ml.predict(input_dataset, target_column) # Try to obtain ML pred.
```
### Training:
Trains many models based on dataset, select top 3 and optimise them for better performance.
```
training_dataset = read_csv("training_dataset.csv") # Load dataset for training.
input_column_names = ["column_a", "column_b", "column_c"] # What features to predict with.
target_column = "column_d" # What component you want predicted.
train_test_ratio = 0.8 # What data % to dedicate to training.
ml.train(training_dataset, input_column_names, target_column, train_test_ratio)
```
Raw data
{
"_id": null,
"home_page": null,
"name": "RapidUseML",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "machine learning, whittle laboratory",
"author": "5krus (Eryk Krusinski)",
"author_email": "<eryk@krus.co.uk>",
"download_url": "https://files.pythonhosted.org/packages/a6/2d/1d8c8e899fd73d18d0d5756e9bdab9533399a4c9607f83e604a695a85748/RapidUseML-1.0.2.tar.gz",
"platform": null,
"description": "\n# RapidUseML\n\nMinimalistic Machine Learning Toolset used for quick training and usage of various models. \nOne click for training, one click for prediction.\n\n\n## Usage:\n\n### Basics:\n\nPrepare basic necessities for usage.\n\n```\nimport RapidUse # Ensure class is imported.\nml = RapidUse.ML() # Create instance of class.\nfrom pandas import read_csv # Get pandas to read CSVs.\n```\n\n\n### Prediction:\n\nPredicts target value(s) based on input data provided, with automated model identification.\nNote: ML.prdict(...) checks the folder and all directories within the folder its located in for the relevant model. \n\n```\ninput_dataset = read_csv(\"input_dataset.csv\") # Load dataset for pred.\ntarget_column = \"column_d\" # Prediction target.\nprediction_set = ml.predict(input_dataset, target_column) # Try to obtain ML pred.\n```\n\n### Training:\n\nTrains many models based on dataset, select top 3 and optimise them for better performance.\n\n```\ntraining_dataset = read_csv(\"training_dataset.csv\") # Load dataset for training.\ninput_column_names = [\"column_a\", \"column_b\", \"column_c\"] # What features to predict with.\ntarget_column = \"column_d\" # What component you want predicted.\ntrain_test_ratio = 0.8 # What data % to dedicate to training.\nml.train(training_dataset, input_column_names, target_column, train_test_ratio)\n```\n",
"bugtrack_url": null,
"license": null,
"summary": "Minimalistic Machine Learning Toolset.",
"version": "1.0.2",
"project_urls": null,
"split_keywords": [
"machine learning",
" whittle laboratory"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "2a7a463932f402dbcaf98526fd1ba9121d1d99edb378d8ceb129e438aad1227e",
"md5": "65a8aca703808ff401f9cb47478c8efd",
"sha256": "355f7756bd82cfc7f4acbade23ed6f2800ef97bf895780e273e00e00130067a9"
},
"downloads": -1,
"filename": "RapidUseML-1.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "65a8aca703808ff401f9cb47478c8efd",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 8956,
"upload_time": "2025-02-09T17:26:06",
"upload_time_iso_8601": "2025-02-09T17:26:06.373525Z",
"url": "https://files.pythonhosted.org/packages/2a/7a/463932f402dbcaf98526fd1ba9121d1d99edb378d8ceb129e438aad1227e/RapidUseML-1.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a62d1d8c8e899fd73d18d0d5756e9bdab9533399a4c9607f83e604a695a85748",
"md5": "c4eeb2ec2b3f612b424a1dc1b1f352a4",
"sha256": "edb7024bb325103d97e88110844fd21a1071e17a9e74669f867a60e207ebba61"
},
"downloads": -1,
"filename": "RapidUseML-1.0.2.tar.gz",
"has_sig": false,
"md5_digest": "c4eeb2ec2b3f612b424a1dc1b1f352a4",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 9500,
"upload_time": "2025-02-09T17:26:08",
"upload_time_iso_8601": "2025-02-09T17:26:08.368254Z",
"url": "https://files.pythonhosted.org/packages/a6/2d/1d8c8e899fd73d18d0d5756e9bdab9533399a4c9607f83e604a695a85748/RapidUseML-1.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-09 17:26:08",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "rapiduseml"
}