RapidUseML


NameRapidUseML JSON
Version 1.0.2 PyPI version JSON
download
home_pageNone
SummaryMinimalistic Machine Learning Toolset.
upload_time2025-02-09 17:26:08
maintainerNone
docs_urlNone
author5krus (Eryk Krusinski)
requires_pythonNone
licenseNone
keywords machine learning whittle laboratory
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# RapidUseML

Minimalistic Machine Learning Toolset used for quick training and usage of various models. 
One click for training, one click for prediction.


## Usage:

### Basics:

Prepare basic necessities for usage.

```
import RapidUse                                            # Ensure class is imported.
ml = RapidUse.ML()                                         # Create instance of class.
from pandas import read_csv                                # Get pandas to read CSVs.
```


### Prediction:

Predicts target value(s) based on input data provided, with automated model identification.
Note: ML.prdict(...) checks the folder and all directories within the folder its located in for the relevant model. 

```
input_dataset = read_csv("input_dataset.csv")              # Load dataset for pred.
target_column = "column_d"                                 # Prediction target.
prediction_set = ml.predict(input_dataset, target_column)  # Try to obtain ML pred.
```

### Training:

Trains many models based on dataset, select top 3 and optimise them for better performance.

```
training_dataset = read_csv("training_dataset.csv")        # Load dataset for training.
input_column_names = ["column_a", "column_b", "column_c"]  # What features to predict with.
target_column = "column_d"                                 # What component you want predicted.
train_test_ratio = 0.8                                     # What data % to dedicate to training.
ml.train(training_dataset, input_column_names, target_column, train_test_ratio)
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "RapidUseML",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "machine learning, whittle laboratory",
    "author": "5krus (Eryk Krusinski)",
    "author_email": "<eryk@krus.co.uk>",
    "download_url": "https://files.pythonhosted.org/packages/a6/2d/1d8c8e899fd73d18d0d5756e9bdab9533399a4c9607f83e604a695a85748/RapidUseML-1.0.2.tar.gz",
    "platform": null,
    "description": "\n# RapidUseML\n\nMinimalistic Machine Learning Toolset used for quick training and usage of various models. \nOne click for training, one click for prediction.\n\n\n## Usage:\n\n### Basics:\n\nPrepare basic necessities for usage.\n\n```\nimport RapidUse                                            # Ensure class is imported.\nml = RapidUse.ML()                                         # Create instance of class.\nfrom pandas import read_csv                                # Get pandas to read CSVs.\n```\n\n\n### Prediction:\n\nPredicts target value(s) based on input data provided, with automated model identification.\nNote: ML.prdict(...) checks the folder and all directories within the folder its located in for the relevant model. \n\n```\ninput_dataset = read_csv(\"input_dataset.csv\")              # Load dataset for pred.\ntarget_column = \"column_d\"                                 # Prediction target.\nprediction_set = ml.predict(input_dataset, target_column)  # Try to obtain ML pred.\n```\n\n### Training:\n\nTrains many models based on dataset, select top 3 and optimise them for better performance.\n\n```\ntraining_dataset = read_csv(\"training_dataset.csv\")        # Load dataset for training.\ninput_column_names = [\"column_a\", \"column_b\", \"column_c\"]  # What features to predict with.\ntarget_column = \"column_d\"                                 # What component you want predicted.\ntrain_test_ratio = 0.8                                     # What data % to dedicate to training.\nml.train(training_dataset, input_column_names, target_column, train_test_ratio)\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Minimalistic Machine Learning Toolset.",
    "version": "1.0.2",
    "project_urls": null,
    "split_keywords": [
        "machine learning",
        " whittle laboratory"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "2a7a463932f402dbcaf98526fd1ba9121d1d99edb378d8ceb129e438aad1227e",
                "md5": "65a8aca703808ff401f9cb47478c8efd",
                "sha256": "355f7756bd82cfc7f4acbade23ed6f2800ef97bf895780e273e00e00130067a9"
            },
            "downloads": -1,
            "filename": "RapidUseML-1.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "65a8aca703808ff401f9cb47478c8efd",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 8956,
            "upload_time": "2025-02-09T17:26:06",
            "upload_time_iso_8601": "2025-02-09T17:26:06.373525Z",
            "url": "https://files.pythonhosted.org/packages/2a/7a/463932f402dbcaf98526fd1ba9121d1d99edb378d8ceb129e438aad1227e/RapidUseML-1.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a62d1d8c8e899fd73d18d0d5756e9bdab9533399a4c9607f83e604a695a85748",
                "md5": "c4eeb2ec2b3f612b424a1dc1b1f352a4",
                "sha256": "edb7024bb325103d97e88110844fd21a1071e17a9e74669f867a60e207ebba61"
            },
            "downloads": -1,
            "filename": "RapidUseML-1.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "c4eeb2ec2b3f612b424a1dc1b1f352a4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 9500,
            "upload_time": "2025-02-09T17:26:08",
            "upload_time_iso_8601": "2025-02-09T17:26:08.368254Z",
            "url": "https://files.pythonhosted.org/packages/a6/2d/1d8c8e899fd73d18d0d5756e9bdab9533399a4c9607f83e604a695a85748/RapidUseML-1.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-09 17:26:08",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "rapiduseml"
}
        
Elapsed time: 0.40034s