Remote-Sensing-Analysis


NameRemote-Sensing-Analysis JSON
Version 0.1.2 PyPI version JSON
download
home_pagehttp://github.com/aiden200/Remote_Sensing_Analysis
SummaryLibrary that conducts analysis on Satellite Imagery
upload_time2024-04-21 06:26:02
maintainerNone
docs_urlNone
authorAiden Chang
requires_python>=3.9
licenseMIT
keywords machine-learning remote-sensing object-detection
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Remote Sensing Analysis

This package provides tools for processing and analyzing satellite imagery, utilizing advanced machine learning techniques for object detection, image enhancement, and text analytics from images.

## Installation

1. **Download Package**:

To install the Remote Sensing Analysis package, simply run the following command:

```bash
pip install Remote-Sensing-Analysis
```

2. **Download Model Weights**:
   The package requires specific model weights to function correctly. Download the model weights from the following Google Drive link:
   [Download Model Weights](https://drive.google.com/file/d/1KL3H-Fe1SVoCEFaO4KM4J_FMRF4ocoCz/view?usp=sharing)

   After downloading, place the weights under the `pretrained` folder.

## Usage

### Parameters

When initializing the `ImageProcessor`, you can specify the following parameters:

- **model_weights_path**: Path to the model weights file, default is `"pretrained/YOLOv9_DOTA1_100EPOCHS.pt"`.
- **confidence_threshold**: The confidence threshold for object detection. Objects with a confidence level higher than this threshold are considered. Default is `0.1`.
- **output_folder**: The directory where results will be saved. Default is `"results"`.
- **known_phrases**: A list of phrases against which the descriptions of detected objects will be compared. This helps in identifying specific activities or features in images.

### Example Code

Here is how you can use the `ImageProcessor` in your scripts:

```python
from PIL import Image
from Remote_Sensing_Analysis.ImageProcessor import ImageProcessor

def test_image_processing():
    processor = ImageProcessor(
        model_weights_path="pretrained/YOLOv9_DOTA1_100EPOCHS.pt",
        confidence_threshold=0.1,
        output_folder="results",
        known_phrases=[
            "Rocket positioned on the launch pad for final countdown",
            "Final checks on the launch systems",
            "Lots of Activity in the Image",
            "Rocket being fueled"
        ]
    )
    path = "path_to_your_test_image.jpg"
    im1 = Image.open(path)
    # Using .inference method
    report, percentage = processor.inference(im1)
    # Or using .generate method directly with an image object
    report, percentage = processor.generate(im1)

if __name__ == "__main__":
    test_image_processing()
```

The `report` object holds a comprehensive report on the image analysis. The `percentage` object indicates the likelihood of rocket preparation activities occurring. For additional information and data, please refer to the `output_folder` directory.

Replace path_to_your_test_image.jpg with the path to the image file you wish to process.

            

Raw data

            {
    "_id": null,
    "home_page": "http://github.com/aiden200/Remote_Sensing_Analysis",
    "name": "Remote-Sensing-Analysis",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "Machine-Learning Remote-Sensing Object-detection",
    "author": "Aiden Chang",
    "author_email": "aidenchang@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/43/19/c6f192c3bdbc0cb50330283f6d8aac15ece9f5a935dc04932c73fb16d7c8/remote_sensing_analysis-0.1.2.tar.gz",
    "platform": null,
    "description": "# Remote Sensing Analysis\n\nThis package provides tools for processing and analyzing satellite imagery, utilizing advanced machine learning techniques for object detection, image enhancement, and text analytics from images.\n\n## Installation\n\n1. **Download Package**:\n\nTo install the Remote Sensing Analysis package, simply run the following command:\n\n```bash\npip install Remote-Sensing-Analysis\n```\n\n2. **Download Model Weights**:\n   The package requires specific model weights to function correctly. Download the model weights from the following Google Drive link:\n   [Download Model Weights](https://drive.google.com/file/d/1KL3H-Fe1SVoCEFaO4KM4J_FMRF4ocoCz/view?usp=sharing)\n\n   After downloading, place the weights under the `pretrained` folder.\n\n## Usage\n\n### Parameters\n\nWhen initializing the `ImageProcessor`, you can specify the following parameters:\n\n- **model_weights_path**: Path to the model weights file, default is `\"pretrained/YOLOv9_DOTA1_100EPOCHS.pt\"`.\n- **confidence_threshold**: The confidence threshold for object detection. Objects with a confidence level higher than this threshold are considered. Default is `0.1`.\n- **output_folder**: The directory where results will be saved. Default is `\"results\"`.\n- **known_phrases**: A list of phrases against which the descriptions of detected objects will be compared. This helps in identifying specific activities or features in images.\n\n### Example Code\n\nHere is how you can use the `ImageProcessor` in your scripts:\n\n```python\nfrom PIL import Image\nfrom Remote_Sensing_Analysis.ImageProcessor import ImageProcessor\n\ndef test_image_processing():\n    processor = ImageProcessor(\n        model_weights_path=\"pretrained/YOLOv9_DOTA1_100EPOCHS.pt\",\n        confidence_threshold=0.1,\n        output_folder=\"results\",\n        known_phrases=[\n            \"Rocket positioned on the launch pad for final countdown\",\n            \"Final checks on the launch systems\",\n            \"Lots of Activity in the Image\",\n            \"Rocket being fueled\"\n        ]\n    )\n    path = \"path_to_your_test_image.jpg\"\n    im1 = Image.open(path)\n    # Using .inference method\n    report, percentage = processor.inference(im1)\n    # Or using .generate method directly with an image object\n    report, percentage = processor.generate(im1)\n\nif __name__ == \"__main__\":\n    test_image_processing()\n```\n\nThe `report` object holds a comprehensive report on the image analysis. The `percentage` object indicates the likelihood of rocket preparation activities occurring. For additional information and data, please refer to the `output_folder` directory.\n\nReplace path_to_your_test_image.jpg with the path to the image file you wish to process.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Library that conducts analysis on Satellite Imagery",
    "version": "0.1.2",
    "project_urls": {
        "Homepage": "http://github.com/aiden200/Remote_Sensing_Analysis"
    },
    "split_keywords": [
        "machine-learning",
        "remote-sensing",
        "object-detection"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ddb10ff0116222a776946162399ce4f4fc976ba804ba687a0ba8beaa146babec",
                "md5": "2bf7d09d4e252f8803a8af8fa1848416",
                "sha256": "b54ec4e412fbcfdbe5b3c66be494e203e2bddf89097a299f9ebe18566c6e3987"
            },
            "downloads": -1,
            "filename": "Remote_Sensing_Analysis-0.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2bf7d09d4e252f8803a8af8fa1848416",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 9657,
            "upload_time": "2024-04-21T06:25:59",
            "upload_time_iso_8601": "2024-04-21T06:25:59.250126Z",
            "url": "https://files.pythonhosted.org/packages/dd/b1/0ff0116222a776946162399ce4f4fc976ba804ba687a0ba8beaa146babec/Remote_Sensing_Analysis-0.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4319c6f192c3bdbc0cb50330283f6d8aac15ece9f5a935dc04932c73fb16d7c8",
                "md5": "050918f4403a6ecb2cd943e06aa81256",
                "sha256": "4848b85555e0f7bf317ae7feb145f31f367de55379cc7d09d0af099fdc8d582f"
            },
            "downloads": -1,
            "filename": "remote_sensing_analysis-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "050918f4403a6ecb2cd943e06aa81256",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 343779,
            "upload_time": "2024-04-21T06:26:02",
            "upload_time_iso_8601": "2024-04-21T06:26:02.650940Z",
            "url": "https://files.pythonhosted.org/packages/43/19/c6f192c3bdbc0cb50330283f6d8aac15ece9f5a935dc04932c73fb16d7c8/remote_sensing_analysis-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-21 06:26:02",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "aiden200",
    "github_project": "Remote_Sensing_Analysis",
    "github_not_found": true,
    "lcname": "remote-sensing-analysis"
}
        
Elapsed time: 0.22981s