SBCK


NameSBCK JSON
Version 1.3.1 PyPI version JSON
download
home_page
SummaryStatistical Bias Correction Kit
upload_time2023-10-04 13:59:24
maintainer
docs_urlNone
authorYoann Robin
requires_python
licenseGNU General Public License v3
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # SBCK (Statistical Bias Correction Kit)

## Features
- python3 and R version
- c++ independent files for Sparse Histogram
- Implement classic methods of bias correction (see [8,9] for the definition of bias correction)
- Quantile Mapping [5,7,14], parametric and non parametric version
- CDFt methods [6] 
- OTC and dOTC methods [9]
- R2D2 method [11]
- MBCn method [4]
- QDM method [3]
- MRec method [1]
- ECBC method [12]
- TSMBC method [15], for autocorrelations.

## How to select a bias correction method ?

This summary of ability of each method to perform a bias correction is proposed by François, (2020). Please refer to
this article for further interpretation.

| Characteristics                             | CDF-t              | R2D2               | dOTC               | MBCn               | MRec               |
|---------------------------------------------| :----------------: | :----------------: | :----------------: | :----------------: | :----------------: |
| Correction of univariate dist. prop.        |  Yes               |  Yes               |  Yes               |  Yes               |  Yes               |
| Modification of correlations of the model   |  No                |  Yes               |  Yes               |  Yes               |  Yes               |
| Capacity to correct inter-var. prop.        |  No                |  Yes               |  Yes               |  Yes               |  Yes               |
| Capacity to correct spatial prop.           |  No                |  Yes               |  Yes               |  ~                 |  ~                 |
| Capacity to correct temporal prop.          |  No                |  No                |  No                |  No                |  No                |
| Preserve the rank structure of the model    |  Yes               |  ~                 |  ~                 |  ~                 |  ~                 |
| Capacity to correct small geographical area | n.a.               |  Yes               |  Yes               |  Yes               |  Yes               |
| Capacity to correct large geographical area | n.a.               |  ~                 |  ~                 |  ~                 |  No                |
| Allow for change of the multi-dim. prop.    |  Yes               |  No                |  Yes               |  ~                 |  Yes               |


## Python instruction

Requires:
- python3
- [Eigen](http://eigen.tuxfamily.org/index.php?title=Main_Page)
- numpy
- scipy
- pybind11

You can install from pypi:
```
pip3 install SBCK
```

Or from sources:
```
git clone https://github.com/yrobink/SBCK-python.git
cd SBCK
pip3 install .
```

If the Eigen library is not found, use:
```
pip3 install . eigen="path-to-eigen"
```

## Acknowledgements

Thanks to [[Trevor James Smith]](https://github.com/Zeitsperre) for his help with the publication on pypi.


## License

Copyright(c) 2021 / 2023 Yoann Robin

This file is part of SBCK.

SBCK is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SBCK is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with SBCK.  If not, see <https://www.gnu.org/licenses/>.


## References
- [[1]](https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011WR011524) Bárdossy, A. and Pegram, G.: Multiscale spatial recorrelation of RCM precipitation to produce unbiased climate change scenarios over large areas and small, Water Resources Research, 48, 9502–, https://doi.org/10.1029/2011WR011524, 2012.
- [2] Bazaraa, M. S., Jarvis, J. J., and Sherali, H. D.: Linear Programming and Network Flows, 4th edn., John Wiley & Sons, 2009.
- [[3]](https://doi.org/10.1175/JCLI-D-14-00754.1) Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias correction of simulated precipitation by quantile mapping: how well do methods preserve relative changes in quantiles and extremes?, J. Climate, 28, 6938–6959, https://doi.org/10.1175/JCLI-D-14-00754.1, 2015.
- [[4]](https://link.springer.com/article/10.1007/s00382-017-3580-6) Cannon, Alex J.: Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables, Climate Dynamics, nb. 1, vol. 50, p. 31-49, 10.1007/s00382-017-3580-6, 2018.
- [[5]](https://doi.org/10.1016/j.gloplacha.2006.11.030) Déqué, M.: Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values, Global Planet. Change, 57, 16–26, https://doi.org/10.1016/j.gloplacha.2006.11.030, 2007.
- [[6]](https://doi.org/10.1029/2009GL038401) Michelangeli, P.-A., Vrac, M., and Loukos, H.: Probabilistic downscaling approaches: Application to wind cumulative distribution functions, Geophys. Res. Lett., 36, L11708, https://doi.org/10.1029/2009GL038401, 2009.
- [7] Panofsky, H. A. and Brier, G. W.: Some applications of statistics to meteorology, Mineral Industries Extension Services, College of Mineral Industries, Pennsylvania State University, 103 pp., 1958.
- [[8]](https://doi.org/10.1016/j.jhydrol.2010.10.024) Piani, C., Weedon, G., Best, M., Gomes, S., Viterbo, P., Hagemann, S., and Haerter, J.: Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models, J. Hydrol., 395, 199–215, https://doi.org/10.1016/j.jhydrol.2010.10.024, 2010.
- [[9]](https://doi.org/10.5194/hess-23-773-2019) Robin, Y., Vrac, M., Naveau, P., Yiou, P.: Multivariate stochastic bias corrections with optimal transport, Hydrol. Earth Syst. Sci., 23, 773–786, 2019, https://doi.org/10.5194/hess-23-773-2019
- [[10]](https://arxiv.org/abs/1306.0895) Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances. arXiv, https://arxiv.org/abs/1306.0895
- [[11]](https://doi.org/10.5194/hess-22-3175-2018) Vrac, M.: Multivariate bias adjustment of high-dimensional climate simulations: the Rank Resampling for Distributions and Dependences (R2 D2 ) bias correction, Hydrol. Earth Syst. Sci., 22, 3175–3196, https://doi.org/10.5194/hess-22-3175-2018, 2018.
- [[12]](https://doi.org/10.1175/JCLI-D-14-00059.1) Vrac, M. and P. Friederichs, 2015: Multivariate—Intervariable, Spatial, and Temporal—Bias Correction. J. Climate, 28, 218–237, https://doi.org/10.1175/JCLI-D-14-00059.1
- [13] Wasserstein, L. N. (1969). Markov processes over denumerable products of spaces describing large systems of automata. Problems of Information Transmission, 5(3), 47-52.
- [[14]](https://doi.org/10.1023/B:CLIM.0000013685.99609.9e) Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P.: Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs, Clim. Change, 62, 189–216, https://doi.org/10.1023/B:CLIM.0000013685.99609.9e, 2004.
- [[15]](https://doi.org/10.5194/esd-2021-12) Robin, Y. and Vrac, M.: Is time a variable like the others in multivariate statistical downscaling and bias correction?, Earth Syst. Dynam. Discuss. [preprint], https://doi.org/10.5194/esd-2021-12, in review, 2021.
- François, B., Vrac, M., Cannon, A., Robin, Y., and Allard, D.: Multivariate bias corrections of climate simulations: Which benefits for which losses?, Earth Syst. Dyn., 11, 537–562, https://doi.org/10.5194/esd-11-537-2020, https://esd.copernicus.org/articles/11/537/2020/, 2020.

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "SBCK",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Yoann Robin",
    "author_email": "yoann.robin.k@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/f3/6e/0836cb7f6b0bd0f87809b4e556f221f114927e014db10c86187de1fb9fbe/SBCK-1.3.1.tar.gz",
    "platform": "linux",
    "description": "# SBCK (Statistical Bias Correction Kit)\n\n## Features\n- python3 and R version\n- c++ independent files for Sparse Histogram\n- Implement classic methods of bias correction (see [8,9] for the definition of bias correction)\n- Quantile Mapping [5,7,14], parametric and non parametric version\n- CDFt methods [6] \n- OTC and dOTC methods [9]\n- R2D2 method [11]\n- MBCn method [4]\n- QDM method [3]\n- MRec method [1]\n- ECBC method [12]\n- TSMBC method [15], for autocorrelations.\n\n## How to select a bias correction method ?\n\nThis summary of ability of each method to perform a bias correction is proposed by Fran\u00e7ois, (2020). Please refer to\nthis article for further interpretation.\n\n| Characteristics                             | CDF-t              | R2D2               | dOTC               | MBCn               | MRec               |\n|---------------------------------------------| :----------------: | :----------------: | :----------------: | :----------------: | :----------------: |\n| Correction of univariate dist. prop.        |  Yes               |  Yes               |  Yes               |  Yes               |  Yes               |\n| Modification of correlations of the model   |  No                |  Yes               |  Yes               |  Yes               |  Yes               |\n| Capacity to correct inter-var. prop.        |  No                |  Yes               |  Yes               |  Yes               |  Yes               |\n| Capacity to correct spatial prop.           |  No                |  Yes               |  Yes               |  ~                 |  ~                 |\n| Capacity to correct temporal prop.          |  No                |  No                |  No                |  No                |  No                |\n| Preserve the rank structure of the model    |  Yes               |  ~                 |  ~                 |  ~                 |  ~                 |\n| Capacity to correct small geographical area | n.a.               |  Yes               |  Yes               |  Yes               |  Yes               |\n| Capacity to correct large geographical area | n.a.               |  ~                 |  ~                 |  ~                 |  No                |\n| Allow for change of the multi-dim. prop.    |  Yes               |  No                |  Yes               |  ~                 |  Yes               |\n\n\n## Python instruction\n\nRequires:\n- python3\n- [Eigen](http://eigen.tuxfamily.org/index.php?title=Main_Page)\n- numpy\n- scipy\n- pybind11\n\nYou can install from pypi:\n```\npip3 install SBCK\n```\n\nOr from sources:\n```\ngit clone https://github.com/yrobink/SBCK-python.git\ncd SBCK\npip3 install .\n```\n\nIf the Eigen library is not found, use:\n```\npip3 install . eigen=\"path-to-eigen\"\n```\n\n## Acknowledgements\n\nThanks to [[Trevor James Smith]](https://github.com/Zeitsperre) for his help with the publication on pypi.\n\n\n## License\n\nCopyright(c) 2021 / 2023 Yoann Robin\n\nThis file is part of SBCK.\n\nSBCK is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or\n(at your option) any later version.\n\nSBCK is distributed in the hope that it will be useful,\nbut WITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the\nGNU General Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with SBCK.  If not, see <https://www.gnu.org/licenses/>.\n\n\n## References\n- [[1]](https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011WR011524) B\u00e1rdossy, A. and Pegram, G.: Multiscale spatial recorrelation of RCM precipitation to produce unbiased climate change scenarios over large areas and small, Water Resources Research, 48, 9502\u2013, https://doi.org/10.1029/2011WR011524, 2012.\n- [2] Bazaraa, M. S., Jarvis, J. J., and Sherali, H. D.: Linear Programming and Network Flows, 4th edn., John Wiley & Sons, 2009.\n- [[3]](https://doi.org/10.1175/JCLI-D-14-00754.1) Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias correction of simulated precipitation by quantile mapping: how well do methods preserve relative changes in quantiles and extremes?, J. Climate, 28, 6938\u20136959, https://doi.org/10.1175/JCLI-D-14-00754.1, 2015.\n- [[4]](https://link.springer.com/article/10.1007/s00382-017-3580-6) Cannon, Alex J.: Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables, Climate Dynamics, nb. 1, vol. 50, p. 31-49, 10.1007/s00382-017-3580-6, 2018.\n- [[5]](https://doi.org/10.1016/j.gloplacha.2006.11.030) D\u00e9qu\u00e9, M.: Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values, Global Planet. Change, 57, 16\u201326, https://doi.org/10.1016/j.gloplacha.2006.11.030, 2007.\n- [[6]](https://doi.org/10.1029/2009GL038401) Michelangeli, P.-A., Vrac, M., and Loukos, H.: Probabilistic downscaling approaches: Application to wind cumulative distribution functions, Geophys. Res. Lett., 36, L11708, https://doi.org/10.1029/2009GL038401, 2009.\n- [7] Panofsky, H. A. and Brier, G. W.: Some applications of statistics to meteorology, Mineral Industries Extension Services, College of Mineral Industries, Pennsylvania State University, 103 pp., 1958.\n- [[8]](https://doi.org/10.1016/j.jhydrol.2010.10.024) Piani, C., Weedon, G., Best, M., Gomes, S., Viterbo, P., Hagemann, S., and Haerter, J.: Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models, J. Hydrol., 395, 199\u2013215, https://doi.org/10.1016/j.jhydrol.2010.10.024, 2010.\n- [[9]](https://doi.org/10.5194/hess-23-773-2019) Robin, Y., Vrac, M., Naveau, P., Yiou, P.: Multivariate stochastic bias corrections with optimal transport, Hydrol. Earth Syst. Sci., 23, 773\u2013786, 2019, https://doi.org/10.5194/hess-23-773-2019\n- [[10]](https://arxiv.org/abs/1306.0895) Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances. arXiv, https://arxiv.org/abs/1306.0895\n- [[11]](https://doi.org/10.5194/hess-22-3175-2018) Vrac, M.: Multivariate bias adjustment of high-dimensional climate simulations: the Rank Resampling for Distributions and Dependences (R2 D2 ) bias correction, Hydrol. Earth Syst. Sci., 22, 3175\u20133196, https://doi.org/10.5194/hess-22-3175-2018, 2018.\n- [[12]](https://doi.org/10.1175/JCLI-D-14-00059.1) Vrac, M. and P. Friederichs, 2015: Multivariate\u2014Intervariable, Spatial, and Temporal\u2014Bias Correction. J. Climate, 28, 218\u2013237, https://doi.org/10.1175/JCLI-D-14-00059.1\n- [13] Wasserstein, L. N. (1969). Markov processes over denumerable products of spaces describing large systems of automata. Problems of Information Transmission, 5(3), 47-52.\n- [[14]](https://doi.org/10.1023/B:CLIM.0000013685.99609.9e) Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P.: Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs, Clim. Change, 62, 189\u2013216, https://doi.org/10.1023/B:CLIM.0000013685.99609.9e, 2004.\n- [[15]](https://doi.org/10.5194/esd-2021-12) Robin, Y. and Vrac, M.: Is time a variable like the others in multivariate statistical downscaling and bias correction?, Earth Syst. Dynam. Discuss. [preprint], https://doi.org/10.5194/esd-2021-12, in review, 2021.\n- Fran\u00e7ois, B., Vrac, M., Cannon, A., Robin, Y., and Allard, D.: Multivariate bias corrections of climate simulations: Which benefits for which losses?, Earth Syst. Dyn., 11, 537\u2013562, https://doi.org/10.5194/esd-11-537-2020, https://esd.copernicus.org/articles/11/537/2020/, 2020.\n",
    "bugtrack_url": null,
    "license": "GNU General Public License v3",
    "summary": "Statistical Bias Correction Kit",
    "version": "1.3.1",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "54add41ef33768b3c03d7c5666e2025237e5e587dfe478fd06d2d5ddb30bfc28",
                "md5": "e26a206d0bcbfe15916a7079a8f748d7",
                "sha256": "af07c4077c51f8f94639e015661de751d30b225169cd87e0cc03411b199348d7"
            },
            "downloads": -1,
            "filename": "SBCK-1.3.1-cp311-cp311-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "e26a206d0bcbfe15916a7079a8f748d7",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": null,
            "size": 180663,
            "upload_time": "2023-10-04T13:59:23",
            "upload_time_iso_8601": "2023-10-04T13:59:23.469363Z",
            "url": "https://files.pythonhosted.org/packages/54/ad/d41ef33768b3c03d7c5666e2025237e5e587dfe478fd06d2d5ddb30bfc28/SBCK-1.3.1-cp311-cp311-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f36e0836cb7f6b0bd0f87809b4e556f221f114927e014db10c86187de1fb9fbe",
                "md5": "25e8418f1a8fa52e7ec61a22cea201b6",
                "sha256": "671c28990e9a4bee714f53c8dccb62908bc873986d2347174204650470aa0182"
            },
            "downloads": -1,
            "filename": "SBCK-1.3.1.tar.gz",
            "has_sig": false,
            "md5_digest": "25e8418f1a8fa52e7ec61a22cea201b6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 58730,
            "upload_time": "2023-10-04T13:59:24",
            "upload_time_iso_8601": "2023-10-04T13:59:24.652736Z",
            "url": "https://files.pythonhosted.org/packages/f3/6e/0836cb7f6b0bd0f87809b4e556f221f114927e014db10c86187de1fb9fbe/SBCK-1.3.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-04 13:59:24",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "sbck"
}
        
Elapsed time: 0.14599s