SQLConn


NameSQLConn JSON
Version 0.0.16 PyPI version JSON
download
home_pagehttps://github.com/janyoungjin/SQLConn
SummaryThis package facilitates easy SQL database integration.
upload_time2024-06-21 11:22:02
maintainerNone
docs_urlNone
authorjanyoungjin
requires_python>=3.6
licenseNone
keywords mysql postgresql sqlite mssql sql
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # SQLConn

## 한국어 버전(Korean Version)

SQLConn은 다양한 SQL 데이터베이스 관리 시스템(DBMS)에 연결하여 데이터를 쉽게 조작하고 관리할 수 있는 Python 패키지입니다. 이 패키지는 MySQL, PostgreSQL, Microsoft SQL Server 및 SQLite 데이터베이스에 대한 지원을 포함합니다.

### 기능

- 여러 데이터베이스에 대한 통합된 인터페이스 제공
- 데이터 조회 및 조작을 위한 간편한 함수 제공
- 데이터베이스 쿼리 결과를 DataFrame으로 변환
- CSV, Excel, TSV 파일로의 데이터 출력 지원
- 다른 데이터베이스로의 데이터 이동 지원

### 연결가능한 데이터베이스

- MySQL
- PostgreSQL
- Microsoft SQL Server
- SQLite

### 설치 방법

파이썬과 pip가 설치된 환경에서 다음 명령어를 통해 `SQLConn` 패키지를 설치할 수 있습니다:

```bash
pip install SQLConn
```

### 클래스 소개

| 클래스명           | 소개                                                                    | 특이 사항                   |
| ------------------ | ----------------------------------------------------------------------- | --------------------------- |
| `SQLConn`        | 다양한 SQL 데이터베이스 관리 시스템(DBMS)에 연결하기 위한 클래스입니다. | 추상 클래스입니다.          |
| `MYSQLConn`      | MySQL 데이터베이스와의 연결을 관리합니다.                               | SQLConn에게 상속 받았습니다 |
| `MSSQLConn`      | Microsoft SQL Server 데이터베이스와의 연결을 관리합니다.                | SQLConn에게 상속 받았습니다 |
| `PostgreSQLConn` | PostgreSQL 데이터베이스와의 연결을 관리합니다.                          | SQLConn에게 상속 받았습니다 |
| `SQLiteConn`     | SQLite 파일 기반 데이터베이스와의 연결을 관리합니다.                    | SQLConn에게 상속 받았습니다 |

### 메소드 소개

| 메소드명         | 소개                                                           | 특이사항                        |
| ---------------- | -------------------------------------------------------------- | ------------------------------- |
| `to_DataFrame` | SQL 쿼리를 실행하고 결과를 pandas DataFrame으로 반환합니다.    | Show, Select 커맨드만 가능      |
| `execute`      | 데이터베이스에서 SQL 쿼리를 실행하되 결과를 반환하지 않습니다. | Show, Select 커맨드 사용 불가능 |
| `to_csv`       | SQL 쿼리 결과를 CSV 파일로 저장합니다.                         | Show, Select 커맨드만 가능      |
| `to_excel`     | SQL 쿼리 결과를 Excel 파일로 저장합니다.                       | Show, Select 커맨드만 가능      |
| `to_tsv`       | SQL 쿼리 결과를 TSV 파일로 저장합니다.                         | Show, Select 커맨드만 가능      |
| `to_sql`       | 다른 데이터베이스에 SQL 쿼리 결과를 저장합니다.                | Show, Select 커맨드만 가능      |
| `to_HTML`       | 해당 쿼리를 HTML코드로 변환합니다                | Show, Select 커맨드만 가능      |
| `URL`          | 데이터베이스 연결 URL을 제공합니다.                            | 읽기용 프로퍼티                 |
| `engine`       | 데이터베이스 연결을 위한 SQLAlchemy 엔진을 제공합니다.         | 읽기용 프로퍼티                 |
| `conn`       | 데이터베이스 연결 객체를 제공합니다      | 읽기용 프로퍼티                 |

### 사용예제

각 데이터베이스 연결 객체를 생성하고 사용하는 기본적인 방법은 다음과 같습니다:

```py
from SQLConn import MYSQLConn, PostgreSQLConn, MSSQLConn, SQLiteConn

# MySQL 데이터베이스에 연결
mysql_conn = MYSQLConn(host='your-host', user='your-user', password='your-password', database='your-database',port='your-port')

# MsSQL 데이터베이스에 연결
mssql_conn = MSSQLConn(host='your-host', user='your-user', password='your-password', database='your-database',port='your-port')

# PostgreSQL 데이터베이스에 연결
postgresql_conn = PostgreSQLConn(host='your-host', user='your-user', password='your-password', database='your-database',port='your-port')

# SQLite 데이터베이스에 연결
mssql_conn = SQLiteConn('your-host')

# 데이터 조회 예제
df = mysql_conn.to_DataFrame("SELECT * FROM your_table")
print(df)
```

### 로컬호스트에서 사용하기

로컬 호스트 데이터베이스 연결 객체를 생성하고 사용하는 기본적인 방법은 다음과 같습니다:

```py
from SQLConn import MYSQLConn, PostgreSQLConn, MSSQLConn

# MySQL 데이터베이스에 연결
mysql_conn = MYSQLConn('your-password')

# MsSQL 데이터베이스에 연결
mssql_conn = MSSQLConn('your-password')

# PostgreSQL 데이터베이스에 연결
postgresql_conn = PostgreSQLConn('your-password')

# 데이터 조회 예제
df = mysql_conn.to_DataFrame("SELECT * FROM your_table")
print(df)
```

### 패키지 주소

- [github](https://github.com/janyoungjin/SQLConn)
- [pypi](https://pypi.org/project/SQLConn/)

## English Version

SQLConn is a Python package that connects to various SQL database management systems (DBMS) to easily manipulate and manage data. This package includes support for MySQL, PostgreSQL, Microsoft SQL Server and SQLite databases.

### function

- Provides a unified interface to multiple databases
- Provides simple functions for data inquiry and manipulation
- Convert database query results to DataFrame
- Supports data output to CSV, Excel, TSV files
- Support for data movement to other databases

### Support database

- MySQL
- PostgreSQL
- Microsoft SQL Server
- SQLite

### How to install

In an environment where Python and pip are installed, you can install the `SQLConn` package using the following command:

```bash
pip install SQLConn
```

### class info

| class name         | info                                                                    | significant              |
| ------------------ | ----------------------------------------------------------------------- | ------------------------ |
| `SQLConn`        | Class for connecting to various SQL database management systems (DBMS). | It is an abstract class. |
| `MYSQLConn`      | Manages MySQL database relationships.                                   | protected  SQLConn       |
| `MSSQLConn`      | Manages connections to Microsoft SQL Server databases.                  | protected  SQLConn       |
| `PostgreSQLConn` | Manages connections to PostgreSQL databases.                            | protected  SQLConn       |
| `SQLiteConn`     | Manages SQLite file-based database relationships.                       | protected  SQLConn       |

### method info

| method name      | info                                                                | significant                        |
| ---------------- | ------------------------------------------------------------------- | ---------------------------------- |
| `to_DataFrame` | Executes a SQL query and returns the results as a pandas DataFrame. | Show, Select commands only         |
| `execute`      | Executes a SQL query on a database but returns no results.          | Show, Select command not available |
| `to_csv`       | Save the SQL query results as a CSV file.                           | Show, Select commands only         |
| `to_excel`     | Save the SQL query results as an Excel file.                        | Show, Select commands only         |
| `to_tsv`       | Save the SQL query results as a TSV file.                           | Show, Select commands only         |
| `to_sql`       | Store SQL query results in another database.                        | Show, Select commands only         |
| `to_HTML`       | Converts the SQL query results to HTML code.	                | Show, Select 커맨드만 가능      |
| `URL`          | Provide the database connection URL.                                | get property                       |
| `engine`       | Provides SQLAlchemy engine for database connection.                 | get property                       |
| `conn`       | Provides the database connection object.	     | get property                  |

### Example of use

The basic way to create and use each database connection object is as follows:

```py
from SQLConn import MYSQLConn, PostgreSQLConn, MSSQLConn, SQLiteConn

# Connect to MySQL database
mysql_conn = MYSQLConn(host='your-host', user='your-user', password='your-password', database='your-database',port='your-port')

# Connect to MsSQL database
mssql_conn = MSSQLConn(host='your-host', user='your-user', password='your-password', database='your-database',port='your-port')

# Connect to PostgreSQL database
postgresql_conn = PostgreSQLConn(host='your-host', user='your-user', password='your-password', database='your-database',port='your-port')

# Connect to SQLite database
mssql_conn = SQLiteConn('your-host')

# Data query example
df = mysql_conn.to_DataFrame("SELECT * FROM your_table")
print(df)
```

### Using on local host

The basic way to create and use a localhost database connection object is as follows:

```py
from SQLConn import MYSQLConn, PostgreSQLConn, MSSQLConn

# Connect to MySQL database
mysql_conn = MYSQLConn('your-password')

# Connect to MsSQL database
mssql_conn = MSSQLConn('your-password')

# Connect to PostgreSQL database
postgresql_conn = PostgreSQLConn('your-password')

# Data query example
df = mysql_conn.to_DataFrame("SELECT * FROM your_table")
print(df)
```

### package address

- [github](https://github.com/janyoungjin/SQLConn)

- [pypi](https://pypi.org/project/SQLConn/)

### warning

This document was converted from the Korean version to English through a translator, so the meaning may be strange.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/janyoungjin/SQLConn",
    "name": "SQLConn",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "mysql, postgresql, sqlite, mssql, sql",
    "author": "janyoungjin",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/b0/6d/134f8d1efa6a93c2405913e3037aaa3740582ab5c5b4b3ccd9176ae8942d/sqlconn-0.0.16.tar.gz",
    "platform": null,
    "description": "# SQLConn\r\n\r\n## \ud55c\uad6d\uc5b4 \ubc84\uc804(Korean Version)\r\n\r\nSQLConn\uc740 \ub2e4\uc591\ud55c SQL \ub370\uc774\ud130\ubca0\uc774\uc2a4 \uad00\ub9ac \uc2dc\uc2a4\ud15c(DBMS)\uc5d0 \uc5f0\uacb0\ud558\uc5ec \ub370\uc774\ud130\ub97c \uc27d\uac8c \uc870\uc791\ud558\uace0 \uad00\ub9ac\ud560 \uc218 \uc788\ub294 Python \ud328\ud0a4\uc9c0\uc785\ub2c8\ub2e4. \uc774 \ud328\ud0a4\uc9c0\ub294 MySQL, PostgreSQL, Microsoft SQL Server \ubc0f SQLite \ub370\uc774\ud130\ubca0\uc774\uc2a4\uc5d0 \ub300\ud55c \uc9c0\uc6d0\uc744 \ud3ec\ud568\ud569\ub2c8\ub2e4.\r\n\r\n### \uae30\ub2a5\r\n\r\n- \uc5ec\ub7ec \ub370\uc774\ud130\ubca0\uc774\uc2a4\uc5d0 \ub300\ud55c \ud1b5\ud569\ub41c \uc778\ud130\ud398\uc774\uc2a4 \uc81c\uacf5\r\n- \ub370\uc774\ud130 \uc870\ud68c \ubc0f \uc870\uc791\uc744 \uc704\ud55c \uac04\ud3b8\ud55c \ud568\uc218 \uc81c\uacf5\r\n- \ub370\uc774\ud130\ubca0\uc774\uc2a4 \ucffc\ub9ac \uacb0\uacfc\ub97c DataFrame\uc73c\ub85c \ubcc0\ud658\r\n- CSV, Excel, TSV \ud30c\uc77c\ub85c\uc758 \ub370\uc774\ud130 \ucd9c\ub825 \uc9c0\uc6d0\r\n- \ub2e4\ub978 \ub370\uc774\ud130\ubca0\uc774\uc2a4\ub85c\uc758 \ub370\uc774\ud130 \uc774\ub3d9 \uc9c0\uc6d0\r\n\r\n### \uc5f0\uacb0\uac00\ub2a5\ud55c \ub370\uc774\ud130\ubca0\uc774\uc2a4\r\n\r\n- MySQL\r\n- PostgreSQL\r\n- Microsoft SQL Server\r\n- SQLite\r\n\r\n### \uc124\uce58 \ubc29\ubc95\r\n\r\n\ud30c\uc774\uc36c\uacfc pip\uac00 \uc124\uce58\ub41c \ud658\uacbd\uc5d0\uc11c \ub2e4\uc74c \uba85\ub839\uc5b4\ub97c \ud1b5\ud574 `SQLConn` \ud328\ud0a4\uc9c0\ub97c \uc124\uce58\ud560 \uc218 \uc788\uc2b5\ub2c8\ub2e4:\r\n\r\n```bash\r\npip install SQLConn\r\n```\r\n\r\n### \ud074\ub798\uc2a4 \uc18c\uac1c\r\n\r\n| \ud074\ub798\uc2a4\uba85           | \uc18c\uac1c                                                                    | \ud2b9\uc774 \uc0ac\ud56d                   |\r\n| ------------------ | ----------------------------------------------------------------------- | --------------------------- |\r\n| `SQLConn`        | \ub2e4\uc591\ud55c SQL \ub370\uc774\ud130\ubca0\uc774\uc2a4 \uad00\ub9ac \uc2dc\uc2a4\ud15c(DBMS)\uc5d0 \uc5f0\uacb0\ud558\uae30 \uc704\ud55c \ud074\ub798\uc2a4\uc785\ub2c8\ub2e4. | \ucd94\uc0c1 \ud074\ub798\uc2a4\uc785\ub2c8\ub2e4.          |\r\n| `MYSQLConn`      | MySQL \ub370\uc774\ud130\ubca0\uc774\uc2a4\uc640\uc758 \uc5f0\uacb0\uc744 \uad00\ub9ac\ud569\ub2c8\ub2e4.                               | SQLConn\uc5d0\uac8c \uc0c1\uc18d \ubc1b\uc558\uc2b5\ub2c8\ub2e4 |\r\n| `MSSQLConn`      | Microsoft SQL Server \ub370\uc774\ud130\ubca0\uc774\uc2a4\uc640\uc758 \uc5f0\uacb0\uc744 \uad00\ub9ac\ud569\ub2c8\ub2e4.                | SQLConn\uc5d0\uac8c \uc0c1\uc18d \ubc1b\uc558\uc2b5\ub2c8\ub2e4 |\r\n| `PostgreSQLConn` | PostgreSQL \ub370\uc774\ud130\ubca0\uc774\uc2a4\uc640\uc758 \uc5f0\uacb0\uc744 \uad00\ub9ac\ud569\ub2c8\ub2e4.                          | SQLConn\uc5d0\uac8c \uc0c1\uc18d \ubc1b\uc558\uc2b5\ub2c8\ub2e4 |\r\n| `SQLiteConn`     | SQLite \ud30c\uc77c \uae30\ubc18 \ub370\uc774\ud130\ubca0\uc774\uc2a4\uc640\uc758 \uc5f0\uacb0\uc744 \uad00\ub9ac\ud569\ub2c8\ub2e4.                    | SQLConn\uc5d0\uac8c \uc0c1\uc18d \ubc1b\uc558\uc2b5\ub2c8\ub2e4 |\r\n\r\n### \uba54\uc18c\ub4dc \uc18c\uac1c\r\n\r\n| \uba54\uc18c\ub4dc\uba85         | \uc18c\uac1c                                                           | \ud2b9\uc774\uc0ac\ud56d                        |\r\n| ---------------- | -------------------------------------------------------------- | ------------------------------- |\r\n| `to_DataFrame` | SQL \ucffc\ub9ac\ub97c \uc2e4\ud589\ud558\uace0 \uacb0\uacfc\ub97c pandas DataFrame\uc73c\ub85c \ubc18\ud658\ud569\ub2c8\ub2e4.    | Show, Select \ucee4\ub9e8\ub4dc\ub9cc \uac00\ub2a5      |\r\n| `execute`      | \ub370\uc774\ud130\ubca0\uc774\uc2a4\uc5d0\uc11c SQL \ucffc\ub9ac\ub97c \uc2e4\ud589\ud558\ub418 \uacb0\uacfc\ub97c \ubc18\ud658\ud558\uc9c0 \uc54a\uc2b5\ub2c8\ub2e4. | Show, Select \ucee4\ub9e8\ub4dc \uc0ac\uc6a9 \ubd88\uac00\ub2a5 |\r\n| `to_csv`       | SQL \ucffc\ub9ac \uacb0\uacfc\ub97c CSV \ud30c\uc77c\ub85c \uc800\uc7a5\ud569\ub2c8\ub2e4.                         | Show, Select \ucee4\ub9e8\ub4dc\ub9cc \uac00\ub2a5      |\r\n| `to_excel`     | SQL \ucffc\ub9ac \uacb0\uacfc\ub97c Excel \ud30c\uc77c\ub85c \uc800\uc7a5\ud569\ub2c8\ub2e4.                       | Show, Select \ucee4\ub9e8\ub4dc\ub9cc \uac00\ub2a5      |\r\n| `to_tsv`       | SQL \ucffc\ub9ac \uacb0\uacfc\ub97c TSV \ud30c\uc77c\ub85c \uc800\uc7a5\ud569\ub2c8\ub2e4.                         | Show, Select \ucee4\ub9e8\ub4dc\ub9cc \uac00\ub2a5      |\r\n| `to_sql`       | \ub2e4\ub978 \ub370\uc774\ud130\ubca0\uc774\uc2a4\uc5d0 SQL \ucffc\ub9ac \uacb0\uacfc\ub97c \uc800\uc7a5\ud569\ub2c8\ub2e4.                | Show, Select \ucee4\ub9e8\ub4dc\ub9cc \uac00\ub2a5      |\r\n| `to_HTML`       | \ud574\ub2f9 \ucffc\ub9ac\ub97c HTML\ucf54\ub4dc\ub85c \ubcc0\ud658\ud569\ub2c8\ub2e4                | Show, Select \ucee4\ub9e8\ub4dc\ub9cc \uac00\ub2a5      |\r\n| `URL`          | \ub370\uc774\ud130\ubca0\uc774\uc2a4 \uc5f0\uacb0 URL\uc744 \uc81c\uacf5\ud569\ub2c8\ub2e4.                            | \uc77d\uae30\uc6a9 \ud504\ub85c\ud37c\ud2f0                 |\r\n| `engine`       | \ub370\uc774\ud130\ubca0\uc774\uc2a4 \uc5f0\uacb0\uc744 \uc704\ud55c SQLAlchemy \uc5d4\uc9c4\uc744 \uc81c\uacf5\ud569\ub2c8\ub2e4.         | \uc77d\uae30\uc6a9 \ud504\ub85c\ud37c\ud2f0                 |\r\n| `conn`       | \ub370\uc774\ud130\ubca0\uc774\uc2a4 \uc5f0\uacb0 \uac1d\uccb4\ub97c \uc81c\uacf5\ud569\ub2c8\ub2e4      | \uc77d\uae30\uc6a9 \ud504\ub85c\ud37c\ud2f0                 |\r\n\r\n### \uc0ac\uc6a9\uc608\uc81c\r\n\r\n\uac01 \ub370\uc774\ud130\ubca0\uc774\uc2a4 \uc5f0\uacb0 \uac1d\uccb4\ub97c \uc0dd\uc131\ud558\uace0 \uc0ac\uc6a9\ud558\ub294 \uae30\ubcf8\uc801\uc778 \ubc29\ubc95\uc740 \ub2e4\uc74c\uacfc \uac19\uc2b5\ub2c8\ub2e4:\r\n\r\n```py\r\nfrom SQLConn import MYSQLConn, PostgreSQLConn, MSSQLConn, SQLiteConn\r\n\r\n# MySQL \ub370\uc774\ud130\ubca0\uc774\uc2a4\uc5d0 \uc5f0\uacb0\r\nmysql_conn = MYSQLConn(host='your-host', user='your-user', password='your-password', database='your-database',port='your-port')\r\n\r\n# MsSQL \ub370\uc774\ud130\ubca0\uc774\uc2a4\uc5d0 \uc5f0\uacb0\r\nmssql_conn = MSSQLConn(host='your-host', user='your-user', password='your-password', database='your-database',port='your-port')\r\n\r\n# PostgreSQL \ub370\uc774\ud130\ubca0\uc774\uc2a4\uc5d0 \uc5f0\uacb0\r\npostgresql_conn = PostgreSQLConn(host='your-host', user='your-user', password='your-password', database='your-database',port='your-port')\r\n\r\n# SQLite \ub370\uc774\ud130\ubca0\uc774\uc2a4\uc5d0 \uc5f0\uacb0\r\nmssql_conn = SQLiteConn('your-host')\r\n\r\n# \ub370\uc774\ud130 \uc870\ud68c \uc608\uc81c\r\ndf = mysql_conn.to_DataFrame(\"SELECT * FROM your_table\")\r\nprint(df)\r\n```\r\n\r\n### \ub85c\uceec\ud638\uc2a4\ud2b8\uc5d0\uc11c \uc0ac\uc6a9\ud558\uae30\r\n\r\n\ub85c\uceec \ud638\uc2a4\ud2b8 \ub370\uc774\ud130\ubca0\uc774\uc2a4 \uc5f0\uacb0 \uac1d\uccb4\ub97c \uc0dd\uc131\ud558\uace0 \uc0ac\uc6a9\ud558\ub294 \uae30\ubcf8\uc801\uc778 \ubc29\ubc95\uc740 \ub2e4\uc74c\uacfc \uac19\uc2b5\ub2c8\ub2e4:\r\n\r\n```py\r\nfrom SQLConn import MYSQLConn, PostgreSQLConn, MSSQLConn\r\n\r\n# MySQL \ub370\uc774\ud130\ubca0\uc774\uc2a4\uc5d0 \uc5f0\uacb0\r\nmysql_conn = MYSQLConn('your-password')\r\n\r\n# MsSQL \ub370\uc774\ud130\ubca0\uc774\uc2a4\uc5d0 \uc5f0\uacb0\r\nmssql_conn = MSSQLConn('your-password')\r\n\r\n# PostgreSQL \ub370\uc774\ud130\ubca0\uc774\uc2a4\uc5d0 \uc5f0\uacb0\r\npostgresql_conn = PostgreSQLConn('your-password')\r\n\r\n# \ub370\uc774\ud130 \uc870\ud68c \uc608\uc81c\r\ndf = mysql_conn.to_DataFrame(\"SELECT * FROM your_table\")\r\nprint(df)\r\n```\r\n\r\n### \ud328\ud0a4\uc9c0 \uc8fc\uc18c\r\n\r\n- [github](https://github.com/janyoungjin/SQLConn)\r\n- [pypi](https://pypi.org/project/SQLConn/)\r\n\r\n## English Version\r\n\r\nSQLConn is a Python package that connects to various SQL database management systems (DBMS) to easily manipulate and manage data. This package includes support for MySQL, PostgreSQL, Microsoft SQL Server and SQLite databases.\r\n\r\n### function\r\n\r\n- Provides a unified interface to multiple databases\r\n- Provides simple functions for data inquiry and manipulation\r\n- Convert database query results to DataFrame\r\n- Supports data output to CSV, Excel, TSV files\r\n- Support for data movement to other databases\r\n\r\n### Support database\r\n\r\n- MySQL\r\n- PostgreSQL\r\n- Microsoft SQL Server\r\n- SQLite\r\n\r\n### How to install\r\n\r\nIn an environment where Python and pip are installed, you can install the `SQLConn` package using the following command:\r\n\r\n```bash\r\npip install SQLConn\r\n```\r\n\r\n### class info\r\n\r\n| class name         | info                                                                    | significant              |\r\n| ------------------ | ----------------------------------------------------------------------- | ------------------------ |\r\n| `SQLConn`        | Class for connecting to various SQL database management systems (DBMS). | It is an abstract class. |\r\n| `MYSQLConn`      | Manages MySQL database relationships.                                   | protected  SQLConn       |\r\n| `MSSQLConn`      | Manages connections to Microsoft SQL Server databases.                  | protected  SQLConn       |\r\n| `PostgreSQLConn` | Manages connections to PostgreSQL databases.                            | protected  SQLConn       |\r\n| `SQLiteConn`     | Manages SQLite file-based database relationships.                       | protected  SQLConn       |\r\n\r\n### method info\r\n\r\n| method name      | info                                                                | significant                        |\r\n| ---------------- | ------------------------------------------------------------------- | ---------------------------------- |\r\n| `to_DataFrame` | Executes a SQL query and returns the results as a pandas DataFrame. | Show, Select commands only         |\r\n| `execute`      | Executes a SQL query on a database but returns no results.          | Show, Select command not available |\r\n| `to_csv`       | Save the SQL query results as a CSV file.                           | Show, Select commands only         |\r\n| `to_excel`     | Save the SQL query results as an Excel file.                        | Show, Select commands only         |\r\n| `to_tsv`       | Save the SQL query results as a TSV file.                           | Show, Select commands only         |\r\n| `to_sql`       | Store SQL query results in another database.                        | Show, Select commands only         |\r\n| `to_HTML`       | Converts the SQL query results to HTML code.\t                | Show, Select \ucee4\ub9e8\ub4dc\ub9cc \uac00\ub2a5      |\r\n| `URL`          | Provide the database connection URL.                                | get property                       |\r\n| `engine`       | Provides SQLAlchemy engine for database connection.                 | get property                       |\r\n| `conn`       | Provides the database connection object.\t     | get property                  |\r\n\r\n### Example of use\r\n\r\nThe basic way to create and use each database connection object is as follows:\r\n\r\n```py\r\nfrom SQLConn import MYSQLConn, PostgreSQLConn, MSSQLConn, SQLiteConn\r\n\r\n# Connect to MySQL database\r\nmysql_conn = MYSQLConn(host='your-host', user='your-user', password='your-password', database='your-database',port='your-port')\r\n\r\n# Connect to MsSQL database\r\nmssql_conn = MSSQLConn(host='your-host', user='your-user', password='your-password', database='your-database',port='your-port')\r\n\r\n# Connect to PostgreSQL database\r\npostgresql_conn = PostgreSQLConn(host='your-host', user='your-user', password='your-password', database='your-database',port='your-port')\r\n\r\n# Connect to SQLite database\r\nmssql_conn = SQLiteConn('your-host')\r\n\r\n# Data query example\r\ndf = mysql_conn.to_DataFrame(\"SELECT * FROM your_table\")\r\nprint(df)\r\n```\r\n\r\n### Using on local host\r\n\r\nThe basic way to create and use a localhost database connection object is as follows:\r\n\r\n```py\r\nfrom SQLConn import MYSQLConn, PostgreSQLConn, MSSQLConn\r\n\r\n# Connect to MySQL database\r\nmysql_conn = MYSQLConn('your-password')\r\n\r\n# Connect to MsSQL database\r\nmssql_conn = MSSQLConn('your-password')\r\n\r\n# Connect to PostgreSQL database\r\npostgresql_conn = PostgreSQLConn('your-password')\r\n\r\n# Data query example\r\ndf = mysql_conn.to_DataFrame(\"SELECT * FROM your_table\")\r\nprint(df)\r\n```\r\n\r\n### package address\r\n\r\n- [github](https://github.com/janyoungjin/SQLConn)\r\n\r\n- [pypi](https://pypi.org/project/SQLConn/)\r\n\r\n### warning\r\n\r\nThis document was converted from the Korean version to English through a translator, so the meaning may be strange.\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "This package facilitates easy SQL database integration.",
    "version": "0.0.16",
    "project_urls": {
        "Homepage": "https://github.com/janyoungjin/SQLConn"
    },
    "split_keywords": [
        "mysql",
        " postgresql",
        " sqlite",
        " mssql",
        " sql"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0bbdf101610766b6b0b0187ce691f4765de30ad1ddbaa7d6ba4281fa8b235bd0",
                "md5": "91435003609497d433aa5e817b04cf41",
                "sha256": "95fd1c8e0dc5918664055f9659b4dd65f79478e147888ee3bbad923f621e18bd"
            },
            "downloads": -1,
            "filename": "SQLConn-0.0.16-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "91435003609497d433aa5e817b04cf41",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 5035,
            "upload_time": "2024-06-21T11:22:00",
            "upload_time_iso_8601": "2024-06-21T11:22:00.269080Z",
            "url": "https://files.pythonhosted.org/packages/0b/bd/f101610766b6b0b0187ce691f4765de30ad1ddbaa7d6ba4281fa8b235bd0/SQLConn-0.0.16-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b06d134f8d1efa6a93c2405913e3037aaa3740582ab5c5b4b3ccd9176ae8942d",
                "md5": "ee764a71eb36143fd2f9d4dd73fd2459",
                "sha256": "ed39c141a2934525cbccfe682af227bf66e1b1f5fff63f1692d03b7151672cff"
            },
            "downloads": -1,
            "filename": "sqlconn-0.0.16.tar.gz",
            "has_sig": false,
            "md5_digest": "ee764a71eb36143fd2f9d4dd73fd2459",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 5395,
            "upload_time": "2024-06-21T11:22:02",
            "upload_time_iso_8601": "2024-06-21T11:22:02.145966Z",
            "url": "https://files.pythonhosted.org/packages/b0/6d/134f8d1efa6a93c2405913e3037aaa3740582ab5c5b4b3ccd9176ae8942d/sqlconn-0.0.16.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-21 11:22:02",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "janyoungjin",
    "github_project": "SQLConn",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "sqlconn"
}
        
Elapsed time: 3.71546s