.. -*- mode: rst -*-
SNOBFIT - Stable Noisy Optimization by Branch and FIT
=====================================================
SnobFit is intended for optimizing on derivative-free, noisy, blackbox functions.
This modified version has preset defaults as intended for hybrid quantum-classical
algorithms run on Noisy Intermediate Scale Quantum (NISQ) computers.
This version of SNOBFIT was modified and redistributed with permission.
Copyright of original (v2.1):
A. Neumaier, University of Vienna
Copyright of modifications:
UC Regents, Berkeley
Official website:
https://www.mat.univie.ac.at/~neum/software/snobfit/
Reference:
W. Huyer and A. Neumaier, "Snobfit - Stable Noisy Optimization by Branch and Fit",
ACM Trans. Math. Software 35 (2008), Article 9.
https://www.mat.univie.ac.at/~neum/ms/snobfit.pdf
Raw data
{
"_id": null,
"home_page": "http://scikit-quant.org/",
"name": "SQSnobFit",
"maintainer": "Wim Lavrijsen",
"docs_url": null,
"requires_python": "",
"maintainer_email": "WLavrijsen@lbl.gov",
"keywords": "quantum computing optimization",
"author": "",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/5e/38/93f0258aaf46c273869407f18dc0335d4ffda5c2886fc86c16a008b2b225/SQSnobFit-0.4.5.tar.gz",
"platform": "",
"description": ".. -*- mode: rst -*-\n\nSNOBFIT - Stable Noisy Optimization by Branch and FIT\n=====================================================\n\nSnobFit is intended for optimizing on derivative-free, noisy, blackbox functions.\nThis modified version has preset defaults as intended for hybrid quantum-classical\nalgorithms run on Noisy Intermediate Scale Quantum (NISQ) computers.\n\nThis version of SNOBFIT was modified and redistributed with permission.\n\nCopyright of original (v2.1):\n A. Neumaier, University of Vienna\n\nCopyright of modifications:\n UC Regents, Berkeley\n\nOfficial website:\n https://www.mat.univie.ac.at/~neum/software/snobfit/\n\nReference:\n W. Huyer and A. Neumaier, \"Snobfit - Stable Noisy Optimization by Branch and Fit\",\n ACM Trans. Math. Software 35 (2008), Article 9.\n https://www.mat.univie.ac.at/~neum/ms/snobfit.pdf",
"bugtrack_url": null,
"license": "other",
"summary": "SnobFit - Stable Noisy Optimization by Branch and FIT",
"version": "0.4.5",
"project_urls": {
"Homepage": "http://scikit-quant.org/"
},
"split_keywords": [
"quantum",
"computing",
"optimization"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "5e3893f0258aaf46c273869407f18dc0335d4ffda5c2886fc86c16a008b2b225",
"md5": "e9d86e51ab46d6ee7e4765bbbe18537d",
"sha256": "de652aca1fa998dc2235b18d4caec5a225847d40b411f0351fab6f2d4877300f"
},
"downloads": -1,
"filename": "SQSnobFit-0.4.5.tar.gz",
"has_sig": false,
"md5_digest": "e9d86e51ab46d6ee7e4765bbbe18537d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 29105,
"upload_time": "2020-11-30T23:58:59",
"upload_time_iso_8601": "2020-11-30T23:58:59.159178Z",
"url": "https://files.pythonhosted.org/packages/5e/38/93f0258aaf46c273869407f18dc0335d4ffda5c2886fc86c16a008b2b225/SQSnobFit-0.4.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2020-11-30 23:58:59",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "sqsnobfit"
}