SRLR


NameSRLR JSON
Version 0.1.8 PyPI version JSON
download
home_pagehttps://github.com/statsle/SRLR_python
SummaryA package for sketched ridgeless estimator simulations, optimizing generalization. Identify the best sketching size to minimize out-of-sample risks. Stable risk curves in optimally sketched estimator eliminate peaks found in full-sample estimator. SRLR offers practical method to discover the ideal sketching size.
upload_time2023-08-01 20:07:13
maintainer
docs_urlNone
authorSiyue Yang
requires_python>=3.6
licenseMIT
keywords python sketched ridgeless linear regression
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # SRLR

Sketched Ridgeless Linear Regression

## Description

This repository presents numerical simulations that analyze the empirical risks of the sketched ridgeless estimator, aiming to enhance generalization performance. The simulations focus on determining optimal sketching sizes that minimize out-of-sample prediction risks. The results reveal that the optimally sketched estimator exhibits stable risk curves, effectively eliminating the peaks observed in the full-sample estimator. Additionally, we introduce a practical procedure to empirically identify the optimal sketching size.

Suppose we observe data vectors  (x<sub>i</sub>,y<sub>i</sub>) that follow a linear model y<sub>i</sub>=x<sub>i</sub><sup>T</sup>&beta;<sup>*</sup>+&epsilon;<sub>i</sub>, i=1,...n, where y<sub>i</sub> is a univariate response,  x<sub>i</sub> is a d-dimensional predictor, &beta;<sup>*</sup> denotes the vector of regression coefficients, and &epsilon;<sub>i</sub> is a random error. We consider the ridgeless least square estimator β̂=(X<sup>T</sup>X)<sup>+</sup>X<sup>T</sup>Y.

With this package, the simulation results in [this paper](https://arxiv.org/abs/2302.01088) can be reporduced.

## Examples

Please refer to [tutorial.ipynb](https://github.com/statsle/SRLR_python/blob/main/tutorial.ipynb) for a comprehensive example and step-by-step guide.


## Reference

Chen, X., Zeng, Y., Yang, S. and Sun, Q. Sketched Ridgeless Linear Regression: The Role of Downsampling. [Paper](https://arxiv.org/abs/2302.01088)



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/statsle/SRLR_python",
    "name": "SRLR",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "python,sketched ridgeless linear regression",
    "author": "Siyue Yang",
    "author_email": "syue.yang@mail.utoronto.ca",
    "download_url": "https://files.pythonhosted.org/packages/b2/54/0196c1d8c0428fdcac5fc97b5aa0a2008225f53615be473d3bec09fe623b/SRLR-0.1.8.tar.gz",
    "platform": null,
    "description": "# SRLR\n\nSketched Ridgeless Linear Regression\n\n## Description\n\nThis repository presents numerical simulations that analyze the empirical risks of the sketched ridgeless estimator, aiming to enhance generalization performance. The simulations focus on determining optimal sketching sizes that minimize out-of-sample prediction risks. The results reveal that the optimally sketched estimator exhibits stable risk curves, effectively eliminating the peaks observed in the full-sample estimator. Additionally, we introduce a practical procedure to empirically identify the optimal sketching size.\n\nSuppose we observe data vectors  (x<sub>i</sub>,y<sub>i</sub>) that follow a linear model y<sub>i</sub>=x<sub>i</sub><sup>T</sup>&beta;<sup>*</sup>+&epsilon;<sub>i</sub>, i=1,...n, where y<sub>i</sub> is a univariate response,  x<sub>i</sub> is a d-dimensional predictor, &beta;<sup>*</sup> denotes the vector of regression coefficients, and &epsilon;<sub>i</sub> is a random error. We consider the ridgeless least square estimator \u03b2\u0302=(X<sup>T</sup>X)<sup>+</sup>X<sup>T</sup>Y.\n\nWith this package, the simulation results in [this paper](https://arxiv.org/abs/2302.01088) can be reporduced.\n\n## Examples\n\nPlease refer to [tutorial.ipynb](https://github.com/statsle/SRLR_python/blob/main/tutorial.ipynb) for a comprehensive example and step-by-step guide.\n\n\n## Reference\n\nChen, X., Zeng, Y., Yang, S. and Sun, Q. Sketched Ridgeless Linear Regression: The Role of Downsampling. [Paper](https://arxiv.org/abs/2302.01088)\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A package for sketched ridgeless estimator simulations, optimizing generalization. Identify the best sketching size to minimize out-of-sample risks. Stable risk curves in optimally sketched estimator eliminate peaks found in full-sample estimator. SRLR offers practical method to discover the ideal sketching size.",
    "version": "0.1.8",
    "project_urls": {
        "Homepage": "https://github.com/statsle/SRLR_python"
    },
    "split_keywords": [
        "python",
        "sketched ridgeless linear regression"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "479c06c8f041bb07c4cf32f7f20698c4c7b0ba962ef3cf998b9ecf57b66da168",
                "md5": "0f980a4d4030ddcbee4d8d5b62ddb725",
                "sha256": "04ab58fa9456f652ca150af73d03a552160161a4a70bac3fc52f704ac2fdade8"
            },
            "downloads": -1,
            "filename": "SRLR-0.1.8-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0f980a4d4030ddcbee4d8d5b62ddb725",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 10495,
            "upload_time": "2023-08-01T20:07:11",
            "upload_time_iso_8601": "2023-08-01T20:07:11.827907Z",
            "url": "https://files.pythonhosted.org/packages/47/9c/06c8f041bb07c4cf32f7f20698c4c7b0ba962ef3cf998b9ecf57b66da168/SRLR-0.1.8-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b2540196c1d8c0428fdcac5fc97b5aa0a2008225f53615be473d3bec09fe623b",
                "md5": "b8bcd8de1880c440c61e381d0cf53945",
                "sha256": "28eb380946994e8ab5d29a8d507f4bf619e35f40827125f01709f2e2a1c7475b"
            },
            "downloads": -1,
            "filename": "SRLR-0.1.8.tar.gz",
            "has_sig": false,
            "md5_digest": "b8bcd8de1880c440c61e381d0cf53945",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 10008,
            "upload_time": "2023-08-01T20:07:13",
            "upload_time_iso_8601": "2023-08-01T20:07:13.292526Z",
            "url": "https://files.pythonhosted.org/packages/b2/54/0196c1d8c0428fdcac5fc97b5aa0a2008225f53615be473d3bec09fe623b/SRLR-0.1.8.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-01 20:07:13",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "statsle",
    "github_project": "SRLR_python",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "srlr"
}
        
Elapsed time: 0.12288s