SageNP


NameSageNP JSON
Version 0.2 PyPI version JSON
download
home_pagehttps://github.com/tbirkandan/SageNP
SummaryNewman-Penrose calculations for SageMath
upload_time2024-11-09 19:19:14
maintainerNone
docs_urlNone
authorTolga Birkandan, Onur Arman, Emir Baysazan, Selinay Sude Binici, Pelin Ozturk
requires_pythonNone
licenseNone
keywords sagemath newman-penrose formalism petrov classification
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # SageNP: Newman-Penrose calculations for SageMath. 

The class **SageNP** includes functions for some calculations defined in the Newman-Penrose formalism. The code is based on SageManifolds.

# Coded by:                                        

- [Tolga Birkandan](https://web.itu.edu.tr/birkandant/) (Corr.: birkandant@itu.edu.tr)

- [Onur Arman](https://www.linkedin.com/in/onur-arman-709478337/)

- [Emir Baysazan](https://scholar.google.com/citations?user=kq9ia_oAAAAJ&hl=en)

- [Selinay Sude Binici](https://scholar.google.com/citations?user=OjiOpogAAAAJ&hl=tr)

- [Pelin Ozturk] (https://www.linkedin.com/in/pelin-%C3%B6zt%C3%BCrk-3904572b2/?utm_source=share&utm_campaign=share_via&utm_content=profile&utm_medium=ios_app)

- **Special thanks to [Eric Gourgoulhon](https://luth.obspm.fr/~luthier/gourgoulhon/en/)**


# FILES:

- **SageNP.py**: Main file to import in SageMath.

- **[SageNP_Tutorial.ipynb](https://github.com/tbirkandan/SageNP/blob/main/Notebooks/SageNP_Tutorial.ipynb)**: Tutorial (ipynb file) - Definitions and calculations for the Schwarzschild (with covariant null-tetrad vectors) and Reissner-Nordstrom (with contravariant null-tetrad vectors) spacetimes.

- **[SageNP_Tutorial.pdf](https://github.com/tbirkandan/SageNP/blob/main/Notebooks/SageNP_Tutorial.pdf)**: Tutorial (PDF file)  


# REFERENCE:

Main reference for all definitions and calculations:

H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt, "Exact Solutions of Einstein’s Field Equations", 2nd ed. Cambridge: Cambridge University Press, 2003.


# BASIC DEFINITIONS AND NOTATION:

* We will use the Metric signature: (- + + +)                      

* For the null-tetrad vector names, the ref. book uses (k,l,m,mbar). However, in the code we will use (l,n,m,mbar) like the rest of the literature. Therefore one should set k->l, l->n in the ref. book

- Products of the vectors are given by: l*n = -1, m*mbar = 1, all others zero.  
  
- The metric is found using the covariant null-tetrad vectors as:
  
    g = -2*l*n + 2*m*mbar
                            
  and,

    g = [[0  1  0  0], [1  0  0  0], [0  0  0 -1], [0  0 -1  0]]

- Please check the reference book for the details and further definitions.

# INSTRUCTIONS WITH EXAMPLES:

- **Import the class:**
  
    from SageNP import NewmanPenrose
    
- **Define your manifold:**
  
    MyManifold = Manifold(4 , 'MyManifold', r'\mathcal{Man}')

- **Define your coordinates:**
  
    MyCoordinates.<t,r,th,ph> = MyManifold.chart(r't r th:\theta ph:\phi')

- **Define the metric functions (if needed):**

    var('M')
    Delta=r^2-2*M*r
    
- **Enter null tetrad elements:**

    lvec=[1,-(r^2)/Delta,0,0]
  
    nvec=[Delta/(2*r^2),1/2,0,0]

    mvec=[0,0,(-r/sqrt(2)),(-I*r/sqrt(2))*sin(th)]

    mbarvec=[0,0,(-r/sqrt(2)),(I*r/sqrt(2))*sin(th)]

    - *Here, the element ordering is the same as the coordinate ordering. (The first element is the t element, the second is the r element, etc.)*

- **Define an object of the class:**
  
    schw=SageNP(MyManifold,MyCoordinates,lvec,nvec,mvec,mbarvec,'covariant')
  
  - *Here, our null-tetrad vectors lvec, nvec, mvec and mbarvec are covariant. Thus we used the keyword 'covariant'.*
  
  - *If they were contravariant, then we should use the keyword 'contravariant'.*

- **Once the object is defined, the code calculates the metric and displays it on the screen. It is recommended that you check your metric.**

# FUNCTIONS:

- *All page and equation numbers belong to the reference book.*


- **test_nulltetrad()**: Checks the products of the vectors l*n = -1, m*mbar = 1, all others zero.


- **Spin coefficients (Page 75-76, Eq.(7.2))**:
    
    - **calculate_spincoefficients()**: Calculates the spin coefficients.
    
    - **show_spincoefficients()**: Displays the spin coefficients
    
    - All spin coefficients are available under their names:
      
      **kappaNP, kappabarNP, tauNP, taubarNP, sigmaNP, sigmabarNP,
      rhoNP, rhobarNP, piNP, pibarNP, nuNP, nubarNP, muNP, mubarNP,
      lambdaNP, lambdabarNP, epsilonNP, epsilonbarNP, gammaNP, gammabarNP,
      betaNP, betabarNP, alphaNP, alphabarNP**

      
- **Directional derivatives (Page 43, Eq.(3.82))**:

    - **DlNP(X)**: Given X, calculates the D derivative (l direction).

    - **DeltanNP(X)**: Given X, calculates the Delta derivative (n direction)
    
    - **deltamNP(X)**: Given X, calculates the delta derivative (m direction)
    
    - **deltambarNP(X)**: Given X, calculates the deltabar derivative (mbar direction)


- **Commutators (Page 77, Eq.(7.6))**:

    - *The right-hand sides of the commutation relations are calculated.*
    
    - **Deltan_Dl_commNP(X)**: Given X, calculates the [Delta,D] commutator.
    
    - **deltam_Dl_commNP(X)**: Given X, calculates the [delta,D] commutator.
    
    - **deltam_Deltan_commNP(X)**: Given X, calculates the [delta,Delta] commutator.
    
    - **deltambar_deltam_commNP(X)**: Given X, calculates the [deltabar,delta] commutator.


- **Weyl tensor components (Page 38, Eq.(3.59))**:
    
    - **calculate_Weyl()**: Calculates the Weyl tensor components.
    
    - **show_Weyl()**: Displays the Weyl tensor components.
    
    - All Weyl tensor components are available under their names:
      
      **Psi0NP, Psi1NP, Psi2NP, Psi3NP, Psi4NP**


- **Ricci components (Page 78, Eq.(7.10-7.15))**:
    
    - **calculate_Ricci()**: Calculates the Ricci tensor components.
    
    - **show_Ricci()**: Displays the Ricci tensor components.
    
    - All Ricci tensor components are available under their names:
      
      **Phi00NP, Phi01NP, Phi10NP, Phi02NP, Phi20NP, 
      Phi11NP, Phi12NP, Phi21NP, Phi22NP, LambdaNP**


- **Ricci (Newman-Penrose) equations (Page 79, Eq.(7.21))**:
    
    - *All Newman-Penrose equations are defined as 0 = -(left hand side)+(right hand side) of the equations.*
    
    - **calculate_NPeq()**: Calculates the Newman-Penrose equations
    
    - **show_NPeq()**: Displays the Newman-Penrose equations
    
    - All Newman-Penrose equations are available under their names
      in the order they are given in the reference:
  
      **NPeq1, NPeq2, NPeq3, NPeq4, NPeq5, NPeq6, NPeq7, NPeq8, NPeq9, NPeq10, 
      NPeq11, NPeq12, NPeq13, NPeq14, NPeq15, NPeq16, NPeq17, NPeq18**


- **Bianchi identities (Page 81, Eq.(7.32))**:
    
    - *All Bianchi identities are defined as 0 = -(left hand side)+(right hand side) of the equations.*
    
    - **calculate_Bianchi()**: Calculates the Bianchi identities
    
    - **show_Bianchi()**: Displays the Bianchi identities
    
    - All Bianchi identities are available under their names
      in the order they are given in the reference:
      
      **BI1, BI2, BI3, BI4, BI5, BI6, BI7, BI8, BI9, BI10, BI11**


- **Petrov invariants I, J, K, L, N (Kramer p.121, 9.6; p.54, 4.19)**:

  *(also check diagram Fig. 9.1 on p. 122)*
  
    - **calculate_PetrovinvINP()**: Calculates the Petrov invariant I
  
    - **calculate_PetrovinvJNP()**: Calculates the Petrov invariant J
    
    - **calculate_PetrovinvKNP()**: Calculates the Petrov invariant K
    
    - **calculate_PetrovinvLNP()**: Calculates the Petrov invariant L
    
    - **calculate_PetrovinvNNP()**: Calculates the Petrov invariant N

    - All Petrov invariants are available under their names:
      
      **PetrovinvINP, PetrovinvJNP, PetrovinvKNP, PetrovinvLNP, PetrovinvNNP**


- **Petrov type of the spacetime**:
    - **Petrov_frominvariants()**: Calculates the Petrov type using I, J, K, L, N.
      
    - **Petrov_fromWeyl()**: Calculates the Petrov type using the Weyl components

	
- **Massive Klein-Gordon equation**:

	**kleingordon(Phi,M2)**: Calculates the Klein-Gordon equation for a massive scalar field where Phi is a scalar field on the manifold and M2 is the mass of the scalar field. (Ref.: G. Silva-Ortigoza, Rev. Mex. Fis. 4, 543 (1996))
	
	- The result is available under the name: **kgNP**


- **Massive Dirac equation**:

	**dirac(f1,f2,g1,g2,M2)**: Calculates the Dirac equation for a massive spinor field where f1,f2,g1,g2 are the components of the spinor field (defined as scalar fields on the manifold) and M2 is the mass of the spinor field. (Ref.: S. Chandrasekhar, "Mathematical Theory of Black Holes", Oxford Univ. Press, New York (1983), p.544.)
	
	- The result is available under the name: **diracNP**

	
- **SL(2,C) Transformations**: SL(2,C) transformations as defined in Carmeli and Kaye, Annals of Physics 99, 188 (1976).

	**type_A_transformation(z)**: Calculates the Type A transformations where z is a complex variable.

	**show_type_A_transformation()**: Shows the results of the Type A transformations.

	**type_B_transformation(z)**: Calculates the Type B transformations where z is a complex variable.

	**show_type_B_transformation()**: Shows the results of the Type B transformations.

	**type_C_transformation(z)**: Calculates the Type C transformations where z is a complex variable.

	**show_type_C_transformation()**: Shows the results of the Type C transformations.
	
	The results are available under their names:
	**lNP_trA, nNP_trA, mNP_trA, mbarNP_trA, kappaNP_trA, rhoNP_trA, etc., Psi0NP_trA, Psi1NP_trA, etc., Phi00NP_trA, Phi01NP_trA, etc.** and the same notation for **lNP_trB, nNP_trB, etc.** and **lNP_trC, nNP_trC, etc.** for other types.


- **calculate_allNP()**: Runs the following functions:
  
    - calculate_spincoefficients()

    - calculate_Weyl()

    - calculate_Ricci()

    - calculate_NPeq()

    - calculate_Bianchi()

    - Petrov_frominvariants()

    - Petrov_fromWeyl()

- **show_allNP()**: Runs the following functions:

    - show_spincoefficients()

    - show_Weyl()

    - show_Ricci()

    - show_NPeq()

    - show_Bianchi()

    - Petrov_frominvariants()

    - Petrov_fromWeyl()

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/tbirkandan/SageNP",
    "name": "SageNP",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "SageMath, Newman-Penrose formalism, Petrov classification",
    "author": "Tolga Birkandan, Onur Arman, Emir Baysazan, Selinay Sude Binici, Pelin Ozturk",
    "author_email": "birkandant@itu.edu.tr",
    "download_url": "https://files.pythonhosted.org/packages/0a/ed/b212628a1e0a9cd980448e48bee134ff5a83faadd585e0f507503506560e/sagenp-0.2.tar.gz",
    "platform": null,
    "description": "# SageNP: Newman-Penrose calculations for SageMath. \n\nThe class **SageNP** includes functions for some calculations defined in the Newman-Penrose formalism. The code is based on SageManifolds.\n\n# Coded by:                                        \n\n- [Tolga Birkandan](https://web.itu.edu.tr/birkandant/) (Corr.: birkandant@itu.edu.tr)\n\n- [Onur Arman](https://www.linkedin.com/in/onur-arman-709478337/)\n\n- [Emir Baysazan](https://scholar.google.com/citations?user=kq9ia_oAAAAJ&hl=en)\n\n- [Selinay Sude Binici](https://scholar.google.com/citations?user=OjiOpogAAAAJ&hl=tr)\n\n- [Pelin Ozturk] (https://www.linkedin.com/in/pelin-%C3%B6zt%C3%BCrk-3904572b2/?utm_source=share&utm_campaign=share_via&utm_content=profile&utm_medium=ios_app)\n\n- **Special thanks to [Eric Gourgoulhon](https://luth.obspm.fr/~luthier/gourgoulhon/en/)**\n\n\n# FILES:\n\n- **SageNP.py**: Main file to import in SageMath.\n\n- **[SageNP_Tutorial.ipynb](https://github.com/tbirkandan/SageNP/blob/main/Notebooks/SageNP_Tutorial.ipynb)**: Tutorial (ipynb file) - Definitions and calculations for the Schwarzschild (with covariant null-tetrad vectors) and Reissner-Nordstrom (with contravariant null-tetrad vectors) spacetimes.\n\n- **[SageNP_Tutorial.pdf](https://github.com/tbirkandan/SageNP/blob/main/Notebooks/SageNP_Tutorial.pdf)**: Tutorial (PDF file)  \n\n\n# REFERENCE:\n\nMain reference for all definitions and calculations:\n\nH. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt, \"Exact Solutions of Einstein\u2019s Field Equations\", 2nd ed. Cambridge: Cambridge University Press, 2003.\n\n\n# BASIC DEFINITIONS AND NOTATION:\n\n* We will use the Metric signature: (- + + +)                      \n\n* For the null-tetrad vector names, the ref. book uses (k,l,m,mbar). However, in the code we will use (l,n,m,mbar) like the rest of the literature. Therefore one should set k->l, l->n in the ref. book\n\n- Products of the vectors are given by: l*n = -1, m*mbar = 1, all others zero.  \n  \n- The metric is found using the covariant null-tetrad vectors as:\n  \n    g = -2*l*n + 2*m*mbar\n                            \n  and,\n\n    g = [[0  1  0  0], [1  0  0  0], [0  0  0 -1], [0  0 -1  0]]\n\n- Please check the reference book for the details and further definitions.\n\n# INSTRUCTIONS WITH EXAMPLES:\n\n- **Import the class:**\n  \n    from SageNP import NewmanPenrose\n    \n- **Define your manifold:**\n  \n    MyManifold = Manifold(4 , 'MyManifold', r'\\mathcal{Man}')\n\n- **Define your coordinates:**\n  \n    MyCoordinates.<t,r,th,ph> = MyManifold.chart(r't r th:\\theta ph:\\phi')\n\n- **Define the metric functions (if needed):**\n\n    var('M')\n    Delta=r^2-2*M*r\n    \n- **Enter null tetrad elements:**\n\n    lvec=[1,-(r^2)/Delta,0,0]\n  \n    nvec=[Delta/(2*r^2),1/2,0,0]\n\n    mvec=[0,0,(-r/sqrt(2)),(-I*r/sqrt(2))*sin(th)]\n\n    mbarvec=[0,0,(-r/sqrt(2)),(I*r/sqrt(2))*sin(th)]\n\n    - *Here, the element ordering is the same as the coordinate ordering. (The first element is the t element, the second is the r element, etc.)*\n\n- **Define an object of the class:**\n  \n    schw=SageNP(MyManifold,MyCoordinates,lvec,nvec,mvec,mbarvec,'covariant')\n  \n  - *Here, our null-tetrad vectors lvec, nvec, mvec and mbarvec are covariant. Thus we used the keyword 'covariant'.*\n  \n  - *If they were contravariant, then we should use the keyword 'contravariant'.*\n\n- **Once the object is defined, the code calculates the metric and displays it on the screen. It is recommended that you check your metric.**\n\n# FUNCTIONS:\n\n- *All page and equation numbers belong to the reference book.*\n\n\n- **test_nulltetrad()**: Checks the products of the vectors l*n = -1, m*mbar = 1, all others zero.\n\n\n- **Spin coefficients (Page 75-76, Eq.(7.2))**:\n    \n    - **calculate_spincoefficients()**: Calculates the spin coefficients.\n    \n    - **show_spincoefficients()**: Displays the spin coefficients\n    \n    - All spin coefficients are available under their names:\n      \n      **kappaNP, kappabarNP, tauNP, taubarNP, sigmaNP, sigmabarNP,\n      rhoNP, rhobarNP, piNP, pibarNP, nuNP, nubarNP, muNP, mubarNP,\n      lambdaNP, lambdabarNP, epsilonNP, epsilonbarNP, gammaNP, gammabarNP,\n      betaNP, betabarNP, alphaNP, alphabarNP**\n\n      \n- **Directional derivatives (Page 43, Eq.(3.82))**:\n\n    - **DlNP(X)**: Given X, calculates the D derivative (l direction).\n\n    - **DeltanNP(X)**: Given X, calculates the Delta derivative (n direction)\n    \n    - **deltamNP(X)**: Given X, calculates the delta derivative (m direction)\n    \n    - **deltambarNP(X)**: Given X, calculates the deltabar derivative (mbar direction)\n\n\n- **Commutators (Page 77, Eq.(7.6))**:\n\n    - *The right-hand sides of the commutation relations are calculated.*\n    \n    - **Deltan_Dl_commNP(X)**: Given X, calculates the [Delta,D] commutator.\n    \n    - **deltam_Dl_commNP(X)**: Given X, calculates the [delta,D] commutator.\n    \n    - **deltam_Deltan_commNP(X)**: Given X, calculates the [delta,Delta] commutator.\n    \n    - **deltambar_deltam_commNP(X)**: Given X, calculates the [deltabar,delta] commutator.\n\n\n- **Weyl tensor components (Page 38, Eq.(3.59))**:\n    \n    - **calculate_Weyl()**: Calculates the Weyl tensor components.\n    \n    - **show_Weyl()**: Displays the Weyl tensor components.\n    \n    - All Weyl tensor components are available under their names:\n      \n      **Psi0NP, Psi1NP, Psi2NP, Psi3NP, Psi4NP**\n\n\n- **Ricci components (Page 78, Eq.(7.10-7.15))**:\n    \n    - **calculate_Ricci()**: Calculates the Ricci tensor components.\n    \n    - **show_Ricci()**: Displays the Ricci tensor components.\n    \n    - All Ricci tensor components are available under their names:\n      \n      **Phi00NP, Phi01NP, Phi10NP, Phi02NP, Phi20NP, \n      Phi11NP, Phi12NP, Phi21NP, Phi22NP, LambdaNP**\n\n\n- **Ricci (Newman-Penrose) equations (Page 79, Eq.(7.21))**:\n    \n    - *All Newman-Penrose equations are defined as 0 = -(left hand side)+(right hand side) of the equations.*\n    \n    - **calculate_NPeq()**: Calculates the Newman-Penrose equations\n    \n    - **show_NPeq()**: Displays the Newman-Penrose equations\n    \n    - All Newman-Penrose equations are available under their names\n      in the order they are given in the reference:\n  \n      **NPeq1, NPeq2, NPeq3, NPeq4, NPeq5, NPeq6, NPeq7, NPeq8, NPeq9, NPeq10, \n      NPeq11, NPeq12, NPeq13, NPeq14, NPeq15, NPeq16, NPeq17, NPeq18**\n\n\n- **Bianchi identities (Page 81, Eq.(7.32))**:\n    \n    - *All Bianchi identities are defined as 0 = -(left hand side)+(right hand side) of the equations.*\n    \n    - **calculate_Bianchi()**: Calculates the Bianchi identities\n    \n    - **show_Bianchi()**: Displays the Bianchi identities\n    \n    - All Bianchi identities are available under their names\n      in the order they are given in the reference:\n      \n      **BI1, BI2, BI3, BI4, BI5, BI6, BI7, BI8, BI9, BI10, BI11**\n\n\n- **Petrov invariants I, J, K, L, N (Kramer p.121, 9.6; p.54, 4.19)**:\n\n  *(also check diagram Fig. 9.1 on p. 122)*\n  \n    - **calculate_PetrovinvINP()**: Calculates the Petrov invariant I\n  \n    - **calculate_PetrovinvJNP()**: Calculates the Petrov invariant J\n    \n    - **calculate_PetrovinvKNP()**: Calculates the Petrov invariant K\n    \n    - **calculate_PetrovinvLNP()**: Calculates the Petrov invariant L\n    \n    - **calculate_PetrovinvNNP()**: Calculates the Petrov invariant N\n\n    - All Petrov invariants are available under their names:\n      \n      **PetrovinvINP, PetrovinvJNP, PetrovinvKNP, PetrovinvLNP, PetrovinvNNP**\n\n\n- **Petrov type of the spacetime**:\n    - **Petrov_frominvariants()**: Calculates the Petrov type using I, J, K, L, N.\n      \n    - **Petrov_fromWeyl()**: Calculates the Petrov type using the Weyl components\n\n\t\n- **Massive Klein-Gordon equation**:\n\n\t**kleingordon(Phi,M2)**: Calculates the Klein-Gordon equation for a massive scalar field where Phi is a scalar field on the manifold and M2 is the mass of the scalar field. (Ref.: G. Silva-Ortigoza, Rev. Mex. Fis. 4, 543 (1996))\n\t\n\t- The result is available under the name: **kgNP**\n\n\n- **Massive Dirac equation**:\n\n\t**dirac(f1,f2,g1,g2,M2)**: Calculates the Dirac equation for a massive spinor field where f1,f2,g1,g2 are the components of the spinor field (defined as scalar fields on the manifold) and M2 is the mass of the spinor field. (Ref.: S. Chandrasekhar, \"Mathematical Theory of Black Holes\", Oxford Univ. Press, New York (1983), p.544.)\n\t\n\t- The result is available under the name: **diracNP**\n\n\t\n- **SL(2,C) Transformations**: SL(2,C) transformations as defined in Carmeli and Kaye, Annals of Physics 99, 188 (1976).\n\n\t**type_A_transformation(z)**: Calculates the Type A transformations where z is a complex variable.\n\n\t**show_type_A_transformation()**: Shows the results of the Type A transformations.\n\n\t**type_B_transformation(z)**: Calculates the Type B transformations where z is a complex variable.\n\n\t**show_type_B_transformation()**: Shows the results of the Type B transformations.\n\n\t**type_C_transformation(z)**: Calculates the Type C transformations where z is a complex variable.\n\n\t**show_type_C_transformation()**: Shows the results of the Type C transformations.\n\t\n\tThe results are available under their names:\n\t**lNP_trA, nNP_trA, mNP_trA, mbarNP_trA, kappaNP_trA, rhoNP_trA, etc., Psi0NP_trA, Psi1NP_trA, etc., Phi00NP_trA, Phi01NP_trA, etc.** and the same notation for **lNP_trB, nNP_trB, etc.** and **lNP_trC, nNP_trC, etc.** for other types.\n\n\n- **calculate_allNP()**: Runs the following functions:\n  \n    - calculate_spincoefficients()\n\n    - calculate_Weyl()\n\n    - calculate_Ricci()\n\n    - calculate_NPeq()\n\n    - calculate_Bianchi()\n\n    - Petrov_frominvariants()\n\n    - Petrov_fromWeyl()\n\n- **show_allNP()**: Runs the following functions:\n\n    - show_spincoefficients()\n\n    - show_Weyl()\n\n    - show_Ricci()\n\n    - show_NPeq()\n\n    - show_Bianchi()\n\n    - Petrov_frominvariants()\n\n    - Petrov_fromWeyl()\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Newman-Penrose calculations for SageMath",
    "version": "0.2",
    "project_urls": {
        "Homepage": "https://github.com/tbirkandan/SageNP"
    },
    "split_keywords": [
        "sagemath",
        " newman-penrose formalism",
        " petrov classification"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f63d6099e2094dbacc16fda5ed0c1095ed05011c6ac3f3ceec1078cc57afa89a",
                "md5": "0685fca14f65879fe5bbc3226f3f0675",
                "sha256": "b5fa05da10750419bf3e06913d41fadd7865ca1184142458cdf6e659f58f5178"
            },
            "downloads": -1,
            "filename": "SageNP-0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0685fca14f65879fe5bbc3226f3f0675",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 24927,
            "upload_time": "2024-11-09T19:19:13",
            "upload_time_iso_8601": "2024-11-09T19:19:13.072887Z",
            "url": "https://files.pythonhosted.org/packages/f6/3d/6099e2094dbacc16fda5ed0c1095ed05011c6ac3f3ceec1078cc57afa89a/SageNP-0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0aedb212628a1e0a9cd980448e48bee134ff5a83faadd585e0f507503506560e",
                "md5": "35e0d029a7f453b0235e8d37a9edd25f",
                "sha256": "84e76f3ca424f9b73b8ad89b3187050f73c3b402f625badf213e8477cc7f1433"
            },
            "downloads": -1,
            "filename": "sagenp-0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "35e0d029a7f453b0235e8d37a9edd25f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 26518,
            "upload_time": "2024-11-09T19:19:14",
            "upload_time_iso_8601": "2024-11-09T19:19:14.170639Z",
            "url": "https://files.pythonhosted.org/packages/0a/ed/b212628a1e0a9cd980448e48bee134ff5a83faadd585e0f507503506560e/sagenp-0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-09 19:19:14",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "tbirkandan",
    "github_project": "SageNP",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "sagenp"
}
        
Elapsed time: 0.52414s