Seance


NameSeance JSON
Version 0.1.4 PyPI version JSON
download
home_pagehttps://github.com/tblume1992/Seance
SummaryA Wrapper around MLForecast.
upload_time2023-12-04 02:12:55
maintainer
docs_urlNone
authorTyler Blume
requires_python
license
keywords forecasting time series lightgbm mlforecast
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ## Seánce v0.0.5

A simple wrapper around Nixtla's MLForecast aimed at streamlining plug-and-play forecasting.

A general pattern is to optimize then forecast such as:

```
from mlforecast.utils import generate_daily_series
series = generate_daily_series(
    n_series=20,
    max_length=100,
    min_length=50,
    with_trend=True
)


from Seance.Optimizer import Optimize
opt = Optimize(series,
            target_column='y',
            date_column='ds',
            id_column='unique_id',
            freq='D',
            seasonal_period=7,
            test_size=10,
            # ar_lags=[list(range(1, 8))], #by default this will be done based on seasonal period
            metric='smape',
            n_trials=100)
#returns an optuna study obj
best_params, study = opt.fit(seed=1)
```
## optuna plotting
```
import optuna
optuna.visualization.matplotlib.plot_param_importances(study)
```
![alt text](https://github.com/tblume1992/Seance/blob/main/static/seance_param_imp.png?raw=true "Param Importance")
Here we can see the most important parameter is (unsurprisingly) the number of lags. Followd by decay which controls the 'forgetfulness' of the basis functions.
```
optuna.visualization.matplotlib.plot_optimization_history(study)
```
![alt text](https://github.com/tblume1992/Seance/blob/main/static/seance_study.png?raw=true "Study")
## passing off best params for forecasts
```
from Seance.Forecaster import Forecaster
seance = Forecaster()
output = seance.fit(series,
                    target_column='y',
                    date_column='ds',
                    id_column='unique_id',
                    freq='D',
                    **best_params)
predicted = seance.predict(24)
```
## quick plot of the forecasts
```
import matplotlib.pyplot as plt
plot_ser = np.append(series[series['unique_id'] == 'id_00']['y'].values,
                     predicted[predicted['unique_id'] == 'id_00']['LGBMRegressor'].values)
plt.plot(plot_ser)
plt.vlines(x=len(plot_ser) - 24, ymin=0, ymax=max(plot_ser), linestyle='dashed', color='red')
plt.show()
```
![alt text](https://github.com/tblume1992/Seance/blob/main/static/seance_forecast.png?raw=true "Forecast Results")

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/tblume1992/Seance",
    "name": "Seance",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "forecasting,time series,lightgbm,mlforecast",
    "author": "Tyler Blume",
    "author_email": "t-blume@hotmail.com",
    "download_url": "",
    "platform": null,
    "description": "## Se\u00c3\u00a1nce v0.0.5\n\nA simple wrapper around Nixtla's MLForecast aimed at streamlining plug-and-play forecasting.\n\nA general pattern is to optimize then forecast such as:\n\n```\nfrom mlforecast.utils import generate_daily_series\nseries = generate_daily_series(\n    n_series=20,\n    max_length=100,\n    min_length=50,\n    with_trend=True\n)\n\n\nfrom Seance.Optimizer import Optimize\nopt = Optimize(series,\n            target_column='y',\n            date_column='ds',\n            id_column='unique_id',\n            freq='D',\n            seasonal_period=7,\n            test_size=10,\n            # ar_lags=[list(range(1, 8))], #by default this will be done based on seasonal period\n            metric='smape',\n            n_trials=100)\n#returns an optuna study obj\nbest_params, study = opt.fit(seed=1)\n```\n## optuna plotting\n```\nimport optuna\noptuna.visualization.matplotlib.plot_param_importances(study)\n```\n![alt text](https://github.com/tblume1992/Seance/blob/main/static/seance_param_imp.png?raw=true \"Param Importance\")\nHere we can see the most important parameter is (unsurprisingly) the number of lags. Followd by decay which controls the 'forgetfulness' of the basis functions.\n```\noptuna.visualization.matplotlib.plot_optimization_history(study)\n```\n![alt text](https://github.com/tblume1992/Seance/blob/main/static/seance_study.png?raw=true \"Study\")\n## passing off best params for forecasts\n```\nfrom Seance.Forecaster import Forecaster\nseance = Forecaster()\noutput = seance.fit(series,\n                    target_column='y',\n                    date_column='ds',\n                    id_column='unique_id',\n                    freq='D',\n                    **best_params)\npredicted = seance.predict(24)\n```\n## quick plot of the forecasts\n```\nimport matplotlib.pyplot as plt\nplot_ser = np.append(series[series['unique_id'] == 'id_00']['y'].values,\n                     predicted[predicted['unique_id'] == 'id_00']['LGBMRegressor'].values)\nplt.plot(plot_ser)\nplt.vlines(x=len(plot_ser) - 24, ymin=0, ymax=max(plot_ser), linestyle='dashed', color='red')\nplt.show()\n```\n![alt text](https://github.com/tblume1992/Seance/blob/main/static/seance_forecast.png?raw=true \"Forecast Results\")\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "A Wrapper around MLForecast.",
    "version": "0.1.4",
    "project_urls": {
        "Homepage": "https://github.com/tblume1992/Seance"
    },
    "split_keywords": [
        "forecasting",
        "time series",
        "lightgbm",
        "mlforecast"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a0c658b3b302675f76c1eeae6c379e97ac859ea8e7070e83c5e4cd5526e71fcc",
                "md5": "9f1dda278ea242481e212d9121040742",
                "sha256": "02b5cb0d9dc08c5b7684a278e27510ee99004a5ee1b007b3faa2e6ae31f51b86"
            },
            "downloads": -1,
            "filename": "Seance-0.1.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9f1dda278ea242481e212d9121040742",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 16679,
            "upload_time": "2023-12-04T02:12:55",
            "upload_time_iso_8601": "2023-12-04T02:12:55.340203Z",
            "url": "https://files.pythonhosted.org/packages/a0/c6/58b3b302675f76c1eeae6c379e97ac859ea8e7070e83c5e4cd5526e71fcc/Seance-0.1.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-04 02:12:55",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "tblume1992",
    "github_project": "Seance",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "seance"
}
        
Elapsed time: 0.15983s