SentenceGraph
================
<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->
## Install
``` sh
pip install SentenceGraph
```
## How to use
``` python
# from SentenceGraph.core import SentenceGraph, Format, TextNodeType
# from SentenceGraph.functional import create_text_nodes
```
``` python
# sentenceGraph = SentenceGraph()
```
``` python
# SentenceGraph requires all sentences to be passed as TextNode, which is just a namedtuple containing an id and text.
# There are several ways to prepare your sentence data for SentenceGraph.
# Use the builtin helper function which will just assign sequential ids for the data. Useful for experimentation.
# sentences = ['This framework generates embeddings for each input sentence',
# 'Sentences are passed as a list of string.',
# 'The quick brown fox jumps over the lazy dog.']
# sentences = create_text_nodes(sentences)
# #
# sentences = [TextNode(1, 'This framework generates embeddings for each input sentence'),
# TextNode(2, 'Sentences are passed as a list of string.'),
# TextNode(3,'The quick brown fox jumps over the lazy dog.')]
```
``` python
# sim_graph = sentenceGraph.createGraph(sentences)
# sim_graph
```
You can also return a graph matrix in different formats.
``` python
# sim_graph = sentenceGraph.createGraph(sentences, format=Format.Numpy)
# sim_graph
```
Raw data
{
"_id": null,
"home_page": "https://github.com/Hevia/SentenceGraph",
"name": "SentenceGraph",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "",
"keywords": "nbdev jupyter notebook python",
"author": "Hevia",
"author_email": "anthony@hevia.dev",
"download_url": "https://files.pythonhosted.org/packages/7a/44/ed5bb7c16964884d374f0d8379afec7d0bf85bf8dabb4e79b126eaa3224e/SentenceGraph-0.0.5.tar.gz",
"platform": null,
"description": "SentenceGraph\n================\n\n<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->\n\n## Install\n\n``` sh\npip install SentenceGraph\n```\n\n## How to use\n\n``` python\n# from SentenceGraph.core import SentenceGraph, Format, TextNodeType\n# from SentenceGraph.functional import create_text_nodes\n```\n\n``` python\n# sentenceGraph = SentenceGraph()\n```\n\n``` python\n# SentenceGraph requires all sentences to be passed as TextNode, which is just a namedtuple containing an id and text.\n# There are several ways to prepare your sentence data for SentenceGraph.\n\n# Use the builtin helper function which will just assign sequential ids for the data. Useful for experimentation.\n# sentences = ['This framework generates embeddings for each input sentence',\n# 'Sentences are passed as a list of string.', \n# 'The quick brown fox jumps over the lazy dog.']\n\n# sentences = create_text_nodes(sentences)\n\n# # \n# sentences = [TextNode(1, 'This framework generates embeddings for each input sentence'),\n# TextNode(2, 'Sentences are passed as a list of string.'), \n# TextNode(3,'The quick brown fox jumps over the lazy dog.')]\n```\n\n``` python\n# sim_graph = sentenceGraph.createGraph(sentences)\n# sim_graph\n```\n\nYou can also return a graph matrix in different formats.\n\n``` python\n# sim_graph = sentenceGraph.createGraph(sentences, format=Format.Numpy)\n# sim_graph\n```\n\n\n",
"bugtrack_url": null,
"license": "Apache Software License 2.0",
"summary": "Easily create semantic graphs from text using SentenceTransformers",
"version": "0.0.5",
"split_keywords": [
"nbdev",
"jupyter",
"notebook",
"python"
],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "412339fdcfe05ada9db67bf15ee5a848",
"sha256": "bd987cfc502a9961c37b46cb3a726886d4c7388b9bee728e0fa56da997dc82cc"
},
"downloads": -1,
"filename": "SentenceGraph-0.0.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "412339fdcfe05ada9db67bf15ee5a848",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 8409,
"upload_time": "2022-12-18T08:07:40",
"upload_time_iso_8601": "2022-12-18T08:07:40.533731Z",
"url": "https://files.pythonhosted.org/packages/50/54/c8d2e637dfd5eb3df2f9ab4990aaab838c3cb959302d7fbfa82977e6c824/SentenceGraph-0.0.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "ed4040389c5acb383ed6974106bb1cc8",
"sha256": "9589cc57b477eb7e9702d8cb6d9448a7ab7d6059b30bb4d5bef0085727688e9d"
},
"downloads": -1,
"filename": "SentenceGraph-0.0.5.tar.gz",
"has_sig": false,
"md5_digest": "ed4040389c5acb383ed6974106bb1cc8",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 8564,
"upload_time": "2022-12-18T08:07:42",
"upload_time_iso_8601": "2022-12-18T08:07:42.108640Z",
"url": "https://files.pythonhosted.org/packages/7a/44/ed5bb7c16964884d374f0d8379afec7d0bf85bf8dabb4e79b126eaa3224e/SentenceGraph-0.0.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-12-18 08:07:42",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "Hevia",
"github_project": "SentenceGraph",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "sentencegraph"
}