SentiLEYE


NameSentiLEYE JSON
Version 0.1 PyPI version JSON
download
home_page
SummaryA sentiment lexicon algorithm to classify pidgin English and English text into positive, negative or neutral
upload_time2023-06-29 22:12:50
maintainer
docs_urlNone
authorBayode Ogunleye
requires_python
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Hello, you are welcome to SentiLEYE classifier

A sentiment lexicon algorithm to classify pidgin English and English text into positive, negative or neutral


To use this system, you can enter raw text or your document in a csv file format (for example, data.csv). You need to name the column as 'text'. 
The system creates new column for score and class.  You should expect the output as shown below. 

            text     score     class
the bank is good      2       positive


### How to use the packages

from sentileye import result




            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "SentiLEYE",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Bayode Ogunleye",
    "author_email": "batoog101@yahoo.com",
    "download_url": "",
    "platform": null,
    "description": "Hello, you are welcome to SentiLEYE classifier\r\n\r\nA sentiment lexicon algorithm to classify pidgin English and English text into positive, negative or neutral\r\n\r\n\r\nTo use this system, you can enter raw text or your document in a csv file format (for example, data.csv). You need to name the column as 'text'. \r\nThe system creates new column for score and class.  You should expect the output as shown below. \r\n\r\n            text     score     class\r\nthe bank is good      2       positive\r\n\r\n\r\n### How to use the packages\r\n\r\nfrom sentileye import result\r\n\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "A sentiment lexicon algorithm to classify pidgin English and English text into positive, negative or neutral",
    "version": "0.1",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0ed9f29e9feff33afc6423f12927e6a0ec60387b3b0d0e534b4467c131eea9fd",
                "md5": "3dea86f7208f9c0c6807c86530e3b299",
                "sha256": "0515c19e04d3ab8ce2a78db0917c986ddfe8ae62081e9fa6ad45082a0756121a"
            },
            "downloads": -1,
            "filename": "SentiLEYE-0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3dea86f7208f9c0c6807c86530e3b299",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 25088,
            "upload_time": "2023-06-29T22:12:50",
            "upload_time_iso_8601": "2023-06-29T22:12:50.361694Z",
            "url": "https://files.pythonhosted.org/packages/0e/d9/f29e9feff33afc6423f12927e6a0ec60387b3b0d0e534b4467c131eea9fd/SentiLEYE-0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-29 22:12:50",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "sentileye"
}
        
Elapsed time: 0.24850s