Name | SmithWagnerCV JSON |
Version |
0.1.0
JSON |
| download |
home_page | |
Summary | Produces critical values for value-added learning scores proposed in Smith and Wagner (2018) through Monte Carlo simulations. |
upload_time | 2023-06-23 19:04:27 |
maintainer | |
docs_url | None |
author | |
requires_python | >=3.8 |
license | |
keywords |
monte carlo
statistics
value-added learning
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# SmithWagnerCV
This module produces critical values for the disaggregated learning types as described in Smith and Wagner (2018) and Smith and White (2021).
## Examples
Run a Monte Carlo Simulation of mu value of 0.1 and 25 students.
```python
from SmithWagnerCV import RunSimulation
d = RunSimulation(25, 0.1)
```
Simulate all combinations of [10,20] students and [0.1,0.5] mu values and return them as a dictionary
```python
from SmithWagnerCV import SimulationTable
d = SimulationTable([10,20], [0.1,0.5])
```
Simulate all combinations of [10,20] students and [0.1,0.5] mu values and save them to CSV files
```python
from SmithWagnerCV import SaveSimulationTable
d = SaveSimulationTable([10,20], [0.1,0.5])
```
## Installation
Using the pip tool, you can install this module with the following command:
```
pip install SmithWagnerCV
```
Using the conda command you can type the following:
```
conda install -c tazzben smithwagnercv
```
Raw data
{
"_id": null,
"home_page": "",
"name": "SmithWagnerCV",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "Ben Smith <bosmith@unomaha.edu>",
"keywords": "Monte Carlo,Statistics,Value-added Learning",
"author": "",
"author_email": "Ben Smith <bosmith@unomaha.edu>",
"download_url": "https://files.pythonhosted.org/packages/57/07/00a09620f4506ea406a9ba006cb1ba0217fac8633ac1c44387d97487da62/smithwagnercv-0.1.0.tar.gz",
"platform": null,
"description": "# SmithWagnerCV\n \nThis module produces critical values for the disaggregated learning types as described in Smith and Wagner (2018) and Smith and White (2021). \n\n## Examples\n\nRun a Monte Carlo Simulation of mu value of 0.1 and 25 students.\n\n```python\nfrom SmithWagnerCV import RunSimulation\n\nd = RunSimulation(25, 0.1)\n\n```\n\nSimulate all combinations of [10,20] students and [0.1,0.5] mu values and return them as a dictionary\n\n```python\nfrom SmithWagnerCV import SimulationTable\n\nd = SimulationTable([10,20], [0.1,0.5])\n\n```\nSimulate all combinations of [10,20] students and [0.1,0.5] mu values and save them to CSV files\n\n```python\nfrom SmithWagnerCV import SaveSimulationTable \n\nd = SaveSimulationTable([10,20], [0.1,0.5])\n\n```\n\n## Installation\n\nUsing the pip tool, you can install this module with the following command:\n\n```\npip install SmithWagnerCV\n```\n\nUsing the conda command you can type the following:\n\n```\nconda install -c tazzben smithwagnercv \n```\n",
"bugtrack_url": null,
"license": "",
"summary": "Produces critical values for value-added learning scores proposed in Smith and Wagner (2018) through Monte Carlo simulations.",
"version": "0.1.0",
"project_urls": {
"Bug Tracker": "https://github.com/tazzben/SmithWagnerCV/issues",
"Homepage": "https://github.com/tazzben/SmithWagnerCV"
},
"split_keywords": [
"monte carlo",
"statistics",
"value-added learning"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "01cb738537dc8520279bd1a21b0ff8ae991d0324865c506cd68d00a3539eb77f",
"md5": "eec9d10504405314b8367c3288e2cc79",
"sha256": "c3f56ec062677b14f11d8a5b1551c2e69b15966176bdcb95b5079b34b55977af"
},
"downloads": -1,
"filename": "smithwagnercv-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "eec9d10504405314b8367c3288e2cc79",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 4887,
"upload_time": "2023-06-23T19:04:25",
"upload_time_iso_8601": "2023-06-23T19:04:25.185772Z",
"url": "https://files.pythonhosted.org/packages/01/cb/738537dc8520279bd1a21b0ff8ae991d0324865c506cd68d00a3539eb77f/smithwagnercv-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "570700a09620f4506ea406a9ba006cb1ba0217fac8633ac1c44387d97487da62",
"md5": "d048097742420fb3fcbe970aa90eebfd",
"sha256": "e337e6a0cd82bf265f2cded88f1feeb0f5f41b6217fc6c4d43f2cd30dd20b93e"
},
"downloads": -1,
"filename": "smithwagnercv-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "d048097742420fb3fcbe970aa90eebfd",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 4880,
"upload_time": "2023-06-23T19:04:27",
"upload_time_iso_8601": "2023-06-23T19:04:27.412957Z",
"url": "https://files.pythonhosted.org/packages/57/07/00a09620f4506ea406a9ba006cb1ba0217fac8633ac1c44387d97487da62/smithwagnercv-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-06-23 19:04:27",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "tazzben",
"github_project": "SmithWagnerCV",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "smithwagnercv"
}