The code is written in Python and it depends on [Numpy](https://numpy.org), [scipy](https://scipy.org), [TensorFlow](https://www.tensorflow.org) and [SolidsPy](https://solidspy.readthedocs.io/en/latest/).
### Installation
```sh
pip install solidsopt
```
### Load weights for neural networks
```sh
load model
```
## Repositories
Two repositories were created from this project, one contains the structural optimization algorithms and the other has everything related to the development of deep learning methods.
- {{< icon "github" >}} [kssgarcia/DeepLearningOpt](https://github.com/kssgarcia/DeepLearningOpt)
- {{< icon "github" >}} [kssgarcia/OptTopolgy](https://github.com/kssgarcia/OptTopolgy)
## Topology optimization repo
- BESO method [BESO.py](https://github.com/kssgarcia/OptTopolgy/blob/main/BESO.py)
- ESO stress based method [ESO_stress_based.py](https://github.com/kssgarcia/OptTopolgy/blob/main/ESO_stress_based.py)
- ESO stiff based method [ESO_stiff_based.py](https://github.com/kssgarcia/OptTopolgy/blob/main/ESO_stiff_based.py)
- SIMP method [SIMP.py](https://github.com/kssgarcia/OptTopolgy/blob/main/SIMP.py)``
### Instructions
### 1. Clone repository
```sh
git clone https://github.com/kssgarcia/OptTopolgy.git
```
### 2. Download the required packages running the following command
```sh
conda env create -f environment.yml
```
### 3. Install solidspy
```sh
pip install solidspy
```
## Optimization with deep learning repo
- [SIMP_multi.py](https://github.com/kssgarcia/DeepLearningOpt/blob/main/simp/SIMP_multi.py) code used for generate training dataset.
- [CNN.py](https://github.com/kssgarcia/DeepLearningOpt/blob/main/neural_network/CNN.py) code used for training neural network.
- [load_model.py](https://github.com/kssgarcia/DeepLearningOpt/blob/main/neural_network/CNN2.py) code used for load neural network.
- [SIMP_multi_dist.py](https://github.com/kssgarcia/DeepLearningOpt/blob/main/neural_network/SIMP_multi_dist.py) code used for generate dataset with a distributed load.
### Instructions
### 1. Clone repository
```sh
git clone https://github.com/kssgarcia/DeepLearningOpt.git
```
### 2. Download the required packages running the following command
```sh
conda env create -f environment.yml
```
### 3. Install solidspy
```sh
pip install solidspy
```
Raw data
{
"_id": null,
"home_page": "https://github.com/kssgarcia/SolidsOpt",
"name": "SolidsOpt",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "finite-elements,scientific-computing,deep learning,topology,optimization",
"author": "Kevin Sep\u00falveda-Garc\u00eda <kssepulveg@eafit.edu.co>, Nicolas Guarin-Zapata <nguarinz@eafit.edu.co>",
"author_email": "kssepulveg@eafit.edu.co",
"download_url": "https://files.pythonhosted.org/packages/d3/15/c2c157c6762f2111c202fb2fb05c48e8f94a6ed48e22417b639777d31a47/SolidsOpt-0.1.tar.gz",
"platform": null,
"description": "\r\nThe code is written in Python and it depends on [Numpy](https://numpy.org), [scipy](https://scipy.org), [TensorFlow](https://www.tensorflow.org) and [SolidsPy](https://solidspy.readthedocs.io/en/latest/).\r\n\r\n\r\n### Installation\r\n\r\n```sh\r\npip install solidsopt\r\n```\r\n\r\n### Load weights for neural networks\r\n\r\n```sh\r\nload model\r\n```\r\n\r\n## Repositories \r\n\r\nTwo repositories were created from this project, one contains the structural optimization algorithms and the other has everything related to the development of deep learning methods.\r\n\r\n\r\n- {{< icon \"github\" >}} [kssgarcia/DeepLearningOpt](https://github.com/kssgarcia/DeepLearningOpt)\r\n- {{< icon \"github\" >}} [kssgarcia/OptTopolgy](https://github.com/kssgarcia/OptTopolgy)\r\n\r\n\r\n## Topology optimization repo\r\n\r\n- BESO method [BESO.py](https://github.com/kssgarcia/OptTopolgy/blob/main/BESO.py)\r\n- ESO stress based method [ESO_stress_based.py](https://github.com/kssgarcia/OptTopolgy/blob/main/ESO_stress_based.py)\r\n- ESO stiff based method [ESO_stiff_based.py](https://github.com/kssgarcia/OptTopolgy/blob/main/ESO_stiff_based.py)\r\n- SIMP method [SIMP.py](https://github.com/kssgarcia/OptTopolgy/blob/main/SIMP.py)``\r\n\r\n### Instructions\r\n\r\n### 1. Clone repository\r\n\r\n```sh\r\ngit clone https://github.com/kssgarcia/OptTopolgy.git\r\n```\r\n\r\n### 2. Download the required packages running the following command\r\n\r\n```sh\r\nconda env create -f environment.yml\r\n```\r\n\r\n### 3. Install solidspy\r\n\r\n```sh\r\npip install solidspy\r\n```\r\n\r\n## Optimization with deep learning repo\r\n\r\n- [SIMP_multi.py](https://github.com/kssgarcia/DeepLearningOpt/blob/main/simp/SIMP_multi.py) code used for generate training dataset.\r\n- [CNN.py](https://github.com/kssgarcia/DeepLearningOpt/blob/main/neural_network/CNN.py) code used for training neural network.\r\n- [load_model.py](https://github.com/kssgarcia/DeepLearningOpt/blob/main/neural_network/CNN2.py) code used for load neural network.\r\n- [SIMP_multi_dist.py](https://github.com/kssgarcia/DeepLearningOpt/blob/main/neural_network/SIMP_multi_dist.py) code used for generate dataset with a distributed load.\r\n\r\n\r\n### Instructions\r\n\r\n\r\n### 1. Clone repository\r\n\r\n```sh\r\ngit clone https://github.com/kssgarcia/DeepLearningOpt.git\r\n```\r\n\r\n### 2. Download the required packages running the following command\r\n\r\n```sh\r\nconda env create -f environment.yml\r\n```\r\n\r\n### 3. Install solidspy\r\n\r\n```sh\r\npip install solidspy\r\n```\r\n\r\n\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "This package is made to perfome topology optimization of 2D solids",
"version": "0.1",
"project_urls": {
"Homepage": "https://github.com/kssgarcia/SolidsOpt"
},
"split_keywords": [
"finite-elements",
"scientific-computing",
"deep learning",
"topology",
"optimization"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d315c2c157c6762f2111c202fb2fb05c48e8f94a6ed48e22417b639777d31a47",
"md5": "c75db269af3a81049831bb0c65a86f71",
"sha256": "58f5b9e998f4ce8b65b5862dc42604322fe0261b8c3e3004245fef752ee3731c"
},
"downloads": -1,
"filename": "SolidsOpt-0.1.tar.gz",
"has_sig": false,
"md5_digest": "c75db269af3a81049831bb0c65a86f71",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 12228,
"upload_time": "2024-01-03T17:52:41",
"upload_time_iso_8601": "2024-01-03T17:52:41.718390Z",
"url": "https://files.pythonhosted.org/packages/d3/15/c2c157c6762f2111c202fb2fb05c48e8f94a6ed48e22417b639777d31a47/SolidsOpt-0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-01-03 17:52:41",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kssgarcia",
"github_project": "SolidsOpt",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "solidsopt"
}