StockExchange


NameStockExchange JSON
Version 0.0.5 PyPI version JSON
download
home_pageNone
SummaryIndian Stock Data Featch and Represent Graphical Format
upload_time2024-07-28 10:05:39
maintainerNone
docs_urlNone
authorKaushal Zine
requires_pythonNone
licenseNone
keywords python nse stock sharemarket stock market csv
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# StockExchange
stock data featch

    1. nse_main() -
    2. CSV Model -
        Convert Payload json data  data to CSV using Data frame 
        read CSV File => data = pd.read_csv(filename)
        Featch Csv Columns=> data.columns
        target = data.iloc[:, 5:]
        method- csv_data_model(filename,symbol,start_date,end_date)
        parameter -  filename, symbol, start_date, end_date

    3. Graph Model - 
        csv file data(CSV Model) represent as  graphical  format 
        Method - graph(data,symbol,start_date,end_date)
        parameter – data – CSV data  , symbol,start_date,end_date

        use - 
        symbol = 'BAJFINANCE
        series = 'EQ'
        start_date = ('12-05-2023')
        end_date = ('12-06-2023')
        data = pd.read_csv(filename)
        graph(data,symbol,start_date,end_date)

    4. Equity Pre Data-
        Equity pre histary featch 
        Method - equity_predata(symbol, series, start_date, end_date)
        parameter – Symbol, series, Start Date, End Date 
        Use - 
        symbol = 'BAJFINANCE
        series = 'EQ'
        start_date = ('12-05-2023')
        end_date = ('12-06-2023')
        equity_predata(symbol, series, start_date, end_date)

        Output - 
            • Create CSV File  of start date to end date  data 
                _id
                CH_SYMBOL
                Outcome
                CH_SERIES
                CH_MARKET_TYPE
                CH_TRADE_HIGH_PRICE
                CH_TRADE_LOW_PRICE
                CH_OPENING_PRICE
                CH_CLOSING_PRICE
                CH_LAST_TRADED_PRICE
                CH_LAST_TRADED_PRICE
                CH_PREVIOUS_CLS_PRICE
                CH_TOT_TRADED_QTY
                CH_TOT_TRADED_VAL
                CH_52WEEK_HIGH_PRICE
                CH_52WEEK_LOW_PRICE
                CH_TOTAL_TRADES
                CH_ISIN
                CH_TIMESTAMP
                TIMESTAMP
                createdAt
                updatedAt
                __v
                VWAP
                mTIMESTAMP

            • Plot graph in linear scal  using Graph method 


    6. Equity List- 
        NSE listed company List.
        Method-  equitytop_loosers()
        predata – MCAP31032023_0.xlsx (Download using link https://www.nseindia.com/regulations/listing-compliance/nse-market-capitalisation-all-companies)
        output – Teminal output Symbol of listed company
                Create CSV File 
                    Sr. No.
                    Symbol
                    Company Name
                    Market capitalization as on March 31, 2023 (Rs in Lakhs)

    7. Fno List -
        Futures and Options data file.
        Method – fno_list()
        Output - fnolist, count
            CSV File 

    8. Equity Top Gainers-
        Method – equitytop_gainers()
        output – create top gainer  csv file 


    9. Equity Top Loosers-
        Method – equitytop_loosers()

    10.  Option Chain-
        Option chain data dispaly in terminal 
        Indices OPTION – NIFTY, FINNIFTY, BANKNIFTY
        Equities  OPTION -  all symbol
        method  -optionchain(symbol)
        Use - fnolist = optionchain('NIFTY')		
	
    11. Top 25  Valume -
        method – top_valume()
        output – create csv File 


    12. MOST ACTIVE EQUITIES -
        method – active_equities(Num)
        parameter –> num – equities  num of stock 
        use -  active_equities(10)
        output -> create csv file top 10 active quities


    13. 52week High / Low stock -
        method – highorlow_52week(range)
        parameter ->range – “high”  (52week High Stock)
                          - “low”    (52week Low Stock)
        use  - highorlow_52week(“ high”)



    14 Volume Deliverable details data-
        methiod - VolumeDeliverable_moredetails(Symbol, fromdate, todate)
        parameter - symbol = 'ADANIENSOL'
                    fromdate=('26-07-2024')
                    todate=('26-07-2024')
        use -   month data  in ditails ltp
            VolumeDeliverable_moredetails(Symbol, fromdate, todate)

    15 Volume Deliverable -
        methiod - VolumeDeliverable(Symbol, fromdate, todate)
        parameter - symbol = 'ADANIENSOL'
                    fromdate=('26-07-2024')
                    todate=('26-07-2024')
        use - VolumeDeliverable(Symbol, fromdate, todate)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "StockExchange",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "python, nse, stock, sharemarket, Stock market, csv",
    "author": "Kaushal Zine",
    "author_email": "<kaushalzine.it@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/fc/7d/4506d2e7afcb1003d2fbe6cfe0f4c0a466e3908d9148e2653bde7c15021c/StockExchange-0.0.5.tar.gz",
    "platform": null,
    "description": "\n# StockExchange\nstock data featch\n\n    1. nse_main() -\n    2. CSV Model -\n        Convert Payload json data  data to CSV using Data frame \n        read CSV File => data = pd.read_csv(filename)\n        Featch Csv Columns=> data.columns\n        target = data.iloc[:, 5:]\n        method- csv_data_model(filename,symbol,start_date,end_date)\n        parameter -  filename, symbol, start_date, end_date\n\n    3. Graph Model - \n        csv file data(CSV Model) represent as  graphical  format \n        Method - graph(data,symbol,start_date,end_date)\n        parameter \u2013 data \u2013 CSV data  , symbol,start_date,end_date\n\n        use - \n        symbol = 'BAJFINANCE\n        series = 'EQ'\n        start_date = ('12-05-2023')\n        end_date = ('12-06-2023')\n        data = pd.read_csv(filename)\n        graph(data,symbol,start_date,end_date)\n\n    4. Equity Pre Data-\n        Equity pre histary featch \n        Method - equity_predata(symbol, series, start_date, end_date)\n        parameter \u2013 Symbol, series, Start Date, End Date \n        Use - \n        symbol = 'BAJFINANCE\n        series = 'EQ'\n        start_date = ('12-05-2023')\n        end_date = ('12-06-2023')\n        equity_predata(symbol, series, start_date, end_date)\n\n        Output - \n            \u2022 Create CSV File  of start date to end date  data \n                _id\n                CH_SYMBOL\n                Outcome\n                CH_SERIES\n                CH_MARKET_TYPE\n                CH_TRADE_HIGH_PRICE\n                CH_TRADE_LOW_PRICE\n                CH_OPENING_PRICE\n                CH_CLOSING_PRICE\n                CH_LAST_TRADED_PRICE\n                CH_LAST_TRADED_PRICE\n                CH_PREVIOUS_CLS_PRICE\n                CH_TOT_TRADED_QTY\n                CH_TOT_TRADED_VAL\n                CH_52WEEK_HIGH_PRICE\n                CH_52WEEK_LOW_PRICE\n                CH_TOTAL_TRADES\n                CH_ISIN\n                CH_TIMESTAMP\n                TIMESTAMP\n                createdAt\n                updatedAt\n                __v\n                VWAP\n                mTIMESTAMP\n\n            \u2022 Plot graph in linear scal  using Graph method \n\n\n    6. Equity List- \n        NSE listed company List.\n        Method-  equitytop_loosers()\n        predata \u2013 MCAP31032023_0.xlsx (Download using link https://www.nseindia.com/regulations/listing-compliance/nse-market-capitalisation-all-companies)\n        output \u2013 Teminal output Symbol of listed company\n                Create CSV File \n                    Sr. No.\n                    Symbol\n                    Company Name\n                    Market capitalization as on March 31, 2023 (Rs in Lakhs)\n\n    7. Fno List -\n        Futures and Options data file.\n        Method \u2013 fno_list()\n        Output - fnolist, count\n            CSV File \n\n    8. Equity Top Gainers-\n        Method \u2013 equitytop_gainers()\n        output \u2013 create top gainer  csv file \n\n\n    9. Equity Top Loosers-\n        Method \u2013 equitytop_loosers()\n\n    10.  Option Chain-\n        Option chain data dispaly in terminal \n        Indices OPTION \u2013 NIFTY, FINNIFTY, BANKNIFTY\n        Equities  OPTION -  all symbol\n        method  -optionchain(symbol)\n        Use - fnolist = optionchain('NIFTY')\t\t\n\t\n    11. Top 25  Valume -\n        method \u2013 top_valume()\n        output \u2013 create csv File \n\n\n    12. MOST ACTIVE EQUITIES -\n        method \u2013 active_equities(Num)\n        parameter \u2013> num \u2013 equities  num of stock \n        use -  active_equities(10)\n        output -> create csv file top 10 active quities\n\n\n    13. 52week High / Low stock -\n        method \u2013 highorlow_52week(range)\n        parameter ->range \u2013 \u201chigh\u201d  (52week High Stock)\n                          - \u201clow\u201d    (52week Low Stock)\n        use  - highorlow_52week(\u201c high\u201d)\n\n\n\n    14 Volume Deliverable details data-\n        methiod - VolumeDeliverable_moredetails(Symbol, fromdate, todate)\n        parameter - symbol = 'ADANIENSOL'\n                    fromdate=('26-07-2024')\n                    todate=('26-07-2024')\n        use -   month data  in ditails ltp\n            VolumeDeliverable_moredetails(Symbol, fromdate, todate)\n\n    15 Volume Deliverable -\n        methiod - VolumeDeliverable(Symbol, fromdate, todate)\n        parameter - symbol = 'ADANIENSOL'\n                    fromdate=('26-07-2024')\n                    todate=('26-07-2024')\n        use - VolumeDeliverable(Symbol, fromdate, todate)\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Indian Stock Data Featch and Represent Graphical Format",
    "version": "0.0.5",
    "project_urls": null,
    "split_keywords": [
        "python",
        " nse",
        " stock",
        " sharemarket",
        " stock market",
        " csv"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1ad18e844dcf78d46ea2494cb4ed55a65b5e384008e9a557fba07966ecf3e5f5",
                "md5": "0622fa8c6f1a8e320c481190fefe2f52",
                "sha256": "7712f4b2ee5856bf7e3f9461c87fc2a2cc6865e73ee704344023e13cf3cd6274"
            },
            "downloads": -1,
            "filename": "StockExchange-0.0.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0622fa8c6f1a8e320c481190fefe2f52",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 6531,
            "upload_time": "2024-07-28T10:05:30",
            "upload_time_iso_8601": "2024-07-28T10:05:30.709839Z",
            "url": "https://files.pythonhosted.org/packages/1a/d1/8e844dcf78d46ea2494cb4ed55a65b5e384008e9a557fba07966ecf3e5f5/StockExchange-0.0.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fc7d4506d2e7afcb1003d2fbe6cfe0f4c0a466e3908d9148e2653bde7c15021c",
                "md5": "2daad564591db58f71703b4b7eced190",
                "sha256": "7fd983123c6296fee0df82738d473c951907a82611fb44490ca00c112f0e6d92"
            },
            "downloads": -1,
            "filename": "StockExchange-0.0.5.tar.gz",
            "has_sig": false,
            "md5_digest": "2daad564591db58f71703b4b7eced190",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 6142,
            "upload_time": "2024-07-28T10:05:39",
            "upload_time_iso_8601": "2024-07-28T10:05:39.104970Z",
            "url": "https://files.pythonhosted.org/packages/fc/7d/4506d2e7afcb1003d2fbe6cfe0f4c0a466e3908d9148e2653bde7c15021c/StockExchange-0.0.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-28 10:05:39",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "stockexchange"
}
        
Elapsed time: 0.37387s