# StockExchange
stock data featch
1. nse_main() -
2. CSV Model -
Convert Payload json data data to CSV using Data frame
read CSV File => data = pd.read_csv(filename)
Featch Csv Columns=> data.columns
target = data.iloc[:, 5:]
method- csv_data_model(filename,symbol,start_date,end_date)
parameter - filename, symbol, start_date, end_date
3. Graph Model -
csv file data(CSV Model) represent as graphical format
Method - graph(data,symbol,start_date,end_date)
parameter – data – CSV data , symbol,start_date,end_date
use -
symbol = 'BAJFINANCE
series = 'EQ'
start_date = ('12-05-2023')
end_date = ('12-06-2023')
data = pd.read_csv(filename)
graph(data,symbol,start_date,end_date)
4. Equity Pre Data-
Equity pre histary featch
Method - equity_predata(symbol, series, start_date, end_date)
parameter – Symbol, series, Start Date, End Date
Use -
symbol = 'BAJFINANCE
series = 'EQ'
start_date = ('12-05-2023')
end_date = ('12-06-2023')
equity_predata(symbol, series, start_date, end_date)
Output -
• Create CSV File of start date to end date data
_id
CH_SYMBOL
Outcome
CH_SERIES
CH_MARKET_TYPE
CH_TRADE_HIGH_PRICE
CH_TRADE_LOW_PRICE
CH_OPENING_PRICE
CH_CLOSING_PRICE
CH_LAST_TRADED_PRICE
CH_LAST_TRADED_PRICE
CH_PREVIOUS_CLS_PRICE
CH_TOT_TRADED_QTY
CH_TOT_TRADED_VAL
CH_52WEEK_HIGH_PRICE
CH_52WEEK_LOW_PRICE
CH_TOTAL_TRADES
CH_ISIN
CH_TIMESTAMP
TIMESTAMP
createdAt
updatedAt
__v
VWAP
mTIMESTAMP
• Plot graph in linear scal using Graph method
6. Equity List-
NSE listed company List.
Method- equitytop_loosers()
predata – MCAP31032023_0.xlsx (Download using link https://www.nseindia.com/regulations/listing-compliance/nse-market-capitalisation-all-companies)
output – Teminal output Symbol of listed company
Create CSV File
Sr. No.
Symbol
Company Name
Market capitalization as on March 31, 2023 (Rs in Lakhs)
7. Fno List -
Futures and Options data file.
Method – fno_list()
Output - fnolist, count
CSV File
8. Equity Top Gainers-
Method – equitytop_gainers()
output – create top gainer csv file
9. Equity Top Loosers-
Method – equitytop_loosers()
10. Option Chain-
Option chain data dispaly in terminal
Indices OPTION – NIFTY, FINNIFTY, BANKNIFTY
Equities OPTION - all symbol
method -optionchain(symbol)
Use - fnolist = optionchain('NIFTY')
11. Top 25 Valume -
method – top_valume()
output – create csv File
12. MOST ACTIVE EQUITIES -
method – active_equities(Num)
parameter –> num – equities num of stock
use - active_equities(10)
output -> create csv file top 10 active quities
13. 52week High / Low stock -
method – highorlow_52week(range)
parameter ->range – “high” (52week High Stock)
- “low” (52week Low Stock)
use - highorlow_52week(“ high”)
14 Volume Deliverable details data-
methiod - VolumeDeliverable_moredetails(Symbol, fromdate, todate)
parameter - symbol = 'ADANIENSOL'
fromdate=('26-07-2024')
todate=('26-07-2024')
use - month data in ditails ltp
VolumeDeliverable_moredetails(Symbol, fromdate, todate)
15 Volume Deliverable -
methiod - VolumeDeliverable(Symbol, fromdate, todate)
parameter - symbol = 'ADANIENSOL'
fromdate=('26-07-2024')
todate=('26-07-2024')
use - VolumeDeliverable(Symbol, fromdate, todate)
Raw data
{
"_id": null,
"home_page": null,
"name": "StockExchange",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "python, nse, stock, sharemarket, Stock market, csv",
"author": "Kaushal Zine",
"author_email": "<kaushalzine.it@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/fc/7d/4506d2e7afcb1003d2fbe6cfe0f4c0a466e3908d9148e2653bde7c15021c/StockExchange-0.0.5.tar.gz",
"platform": null,
"description": "\n# StockExchange\nstock data featch\n\n 1. nse_main() -\n 2. CSV Model -\n Convert Payload json data data to CSV using Data frame \n read CSV File => data = pd.read_csv(filename)\n Featch Csv Columns=> data.columns\n target = data.iloc[:, 5:]\n method- csv_data_model(filename,symbol,start_date,end_date)\n parameter - filename, symbol, start_date, end_date\n\n 3. Graph Model - \n csv file data(CSV Model) represent as graphical format \n Method - graph(data,symbol,start_date,end_date)\n parameter \u2013 data \u2013 CSV data , symbol,start_date,end_date\n\n use - \n symbol = 'BAJFINANCE\n series = 'EQ'\n start_date = ('12-05-2023')\n end_date = ('12-06-2023')\n data = pd.read_csv(filename)\n graph(data,symbol,start_date,end_date)\n\n 4. Equity Pre Data-\n Equity pre histary featch \n Method - equity_predata(symbol, series, start_date, end_date)\n parameter \u2013 Symbol, series, Start Date, End Date \n Use - \n symbol = 'BAJFINANCE\n series = 'EQ'\n start_date = ('12-05-2023')\n end_date = ('12-06-2023')\n equity_predata(symbol, series, start_date, end_date)\n\n Output - \n \u2022 Create CSV File of start date to end date data \n _id\n CH_SYMBOL\n Outcome\n CH_SERIES\n CH_MARKET_TYPE\n CH_TRADE_HIGH_PRICE\n CH_TRADE_LOW_PRICE\n CH_OPENING_PRICE\n CH_CLOSING_PRICE\n CH_LAST_TRADED_PRICE\n CH_LAST_TRADED_PRICE\n CH_PREVIOUS_CLS_PRICE\n CH_TOT_TRADED_QTY\n CH_TOT_TRADED_VAL\n CH_52WEEK_HIGH_PRICE\n CH_52WEEK_LOW_PRICE\n CH_TOTAL_TRADES\n CH_ISIN\n CH_TIMESTAMP\n TIMESTAMP\n createdAt\n updatedAt\n __v\n VWAP\n mTIMESTAMP\n\n \u2022 Plot graph in linear scal using Graph method \n\n\n 6. Equity List- \n NSE listed company List.\n Method- equitytop_loosers()\n predata \u2013 MCAP31032023_0.xlsx (Download using link https://www.nseindia.com/regulations/listing-compliance/nse-market-capitalisation-all-companies)\n output \u2013 Teminal output Symbol of listed company\n Create CSV File \n Sr. No.\n Symbol\n Company Name\n Market capitalization as on March 31, 2023 (Rs in Lakhs)\n\n 7. Fno List -\n Futures and Options data file.\n Method \u2013 fno_list()\n Output - fnolist, count\n CSV File \n\n 8. Equity Top Gainers-\n Method \u2013 equitytop_gainers()\n output \u2013 create top gainer csv file \n\n\n 9. Equity Top Loosers-\n Method \u2013 equitytop_loosers()\n\n 10. Option Chain-\n Option chain data dispaly in terminal \n Indices OPTION \u2013 NIFTY, FINNIFTY, BANKNIFTY\n Equities OPTION - all symbol\n method -optionchain(symbol)\n Use - fnolist = optionchain('NIFTY')\t\t\n\t\n 11. Top 25 Valume -\n method \u2013 top_valume()\n output \u2013 create csv File \n\n\n 12. MOST ACTIVE EQUITIES -\n method \u2013 active_equities(Num)\n parameter \u2013> num \u2013 equities num of stock \n use - active_equities(10)\n output -> create csv file top 10 active quities\n\n\n 13. 52week High / Low stock -\n method \u2013 highorlow_52week(range)\n parameter ->range \u2013 \u201chigh\u201d (52week High Stock)\n - \u201clow\u201d (52week Low Stock)\n use - highorlow_52week(\u201c high\u201d)\n\n\n\n 14 Volume Deliverable details data-\n methiod - VolumeDeliverable_moredetails(Symbol, fromdate, todate)\n parameter - symbol = 'ADANIENSOL'\n fromdate=('26-07-2024')\n todate=('26-07-2024')\n use - month data in ditails ltp\n VolumeDeliverable_moredetails(Symbol, fromdate, todate)\n\n 15 Volume Deliverable -\n methiod - VolumeDeliverable(Symbol, fromdate, todate)\n parameter - symbol = 'ADANIENSOL'\n fromdate=('26-07-2024')\n todate=('26-07-2024')\n use - VolumeDeliverable(Symbol, fromdate, todate)\n",
"bugtrack_url": null,
"license": null,
"summary": "Indian Stock Data Featch and Represent Graphical Format",
"version": "0.0.5",
"project_urls": null,
"split_keywords": [
"python",
" nse",
" stock",
" sharemarket",
" stock market",
" csv"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "1ad18e844dcf78d46ea2494cb4ed55a65b5e384008e9a557fba07966ecf3e5f5",
"md5": "0622fa8c6f1a8e320c481190fefe2f52",
"sha256": "7712f4b2ee5856bf7e3f9461c87fc2a2cc6865e73ee704344023e13cf3cd6274"
},
"downloads": -1,
"filename": "StockExchange-0.0.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "0622fa8c6f1a8e320c481190fefe2f52",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 6531,
"upload_time": "2024-07-28T10:05:30",
"upload_time_iso_8601": "2024-07-28T10:05:30.709839Z",
"url": "https://files.pythonhosted.org/packages/1a/d1/8e844dcf78d46ea2494cb4ed55a65b5e384008e9a557fba07966ecf3e5f5/StockExchange-0.0.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "fc7d4506d2e7afcb1003d2fbe6cfe0f4c0a466e3908d9148e2653bde7c15021c",
"md5": "2daad564591db58f71703b4b7eced190",
"sha256": "7fd983123c6296fee0df82738d473c951907a82611fb44490ca00c112f0e6d92"
},
"downloads": -1,
"filename": "StockExchange-0.0.5.tar.gz",
"has_sig": false,
"md5_digest": "2daad564591db58f71703b4b7eced190",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 6142,
"upload_time": "2024-07-28T10:05:39",
"upload_time_iso_8601": "2024-07-28T10:05:39.104970Z",
"url": "https://files.pythonhosted.org/packages/fc/7d/4506d2e7afcb1003d2fbe6cfe0f4c0a466e3908d9148e2653bde7c15021c/StockExchange-0.0.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-28 10:05:39",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "stockexchange"
}