SuperSuit


NameSuperSuit JSON
Version 3.9.3 PyPI version JSON
download
home_pageNone
SummaryWrappers for Gymnasium and PettingZoo
upload_time2024-08-12 16:01:48
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseMIT License
keywords reinforcement learning game rl ai gymnasium
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
    <img src="https://raw.githubusercontent.com/Farama-Foundation/SuperSuit/master/supersuit-text.png" width="500px"/>
</p>


SuperSuit introduces a collection of small functions which can wrap reinforcement learning environments to do preprocessing ('microwrappers').
We support Gymnasium for single agent environments and PettingZoo for multi-agent environments (both AECEnv and ParallelEnv environments).


Using it with Gymnasium to convert space invaders to have a grey scale observation space and stack the last 4 frames looks like:

```
import gymnasium
from supersuit import color_reduction_v0, frame_stack_v1

env = gymnasium.make('SpaceInvaders-v0')

env = frame_stack_v1(color_reduction_v0(env, 'full'), 4)
```

Similarly, using SuperSuit with PettingZoo environments looks like

```
from pettingzoo.butterfly import pistonball_v0
env = pistonball_v0.env()

env = frame_stack_v1(color_reduction_v0(env, 'full'), 4)
```


**Please note**: Once the planned wrapper rewrite of Gymnasium is complete and the vector API is stabilized, this project will be deprecated and rewritten as part of a new wrappers package in PettingZoo and the vectorized API will be redone, taking inspiration from the functionality currently in Gymnasium.

## Installing SuperSuit
To install SuperSuit from pypi:

```
python3 -m venv env
source env/bin/activate
pip install --upgrade pip
pip install supersuit
```

Alternatively, to install SuperSuit from source, clone this repo, `cd` to it, and then:

```
python3 -m venv env
source env/bin/activate
pip install --upgrade pip
pip install -e .
```

## Citation

If you use this in your research, please cite:

```
@article{SuperSuit,
  Title = {SuperSuit: Simple Microwrappers for Reinforcement Learning Environments},
  Author = {Terry, J. K and Black, Benjamin and Hari, Ananth},
  journal={arXiv preprint arXiv:2008.08932},
  year={2020}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "SuperSuit",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "Reinforcement Learning, game, RL, AI, gymnasium",
    "author": null,
    "author_email": "Farama Foundation <contact@farama.org>",
    "download_url": "https://files.pythonhosted.org/packages/ba/c5/74e32167c36bef901efa4b6c977711466f1bb1ad83a8fbd4603eee401b2a/supersuit-3.9.3.tar.gz",
    "platform": null,
    "description": "<p align=\"center\">\n    <img src=\"https://raw.githubusercontent.com/Farama-Foundation/SuperSuit/master/supersuit-text.png\" width=\"500px\"/>\n</p>\n\n\nSuperSuit introduces a collection of small functions which can wrap reinforcement learning environments to do preprocessing ('microwrappers').\nWe support Gymnasium for single agent environments and PettingZoo for multi-agent environments (both AECEnv and ParallelEnv environments).\n\n\nUsing it with Gymnasium to convert space invaders to have a grey scale observation space and stack the last 4 frames looks like:\n\n```\nimport gymnasium\nfrom supersuit import color_reduction_v0, frame_stack_v1\n\nenv = gymnasium.make('SpaceInvaders-v0')\n\nenv = frame_stack_v1(color_reduction_v0(env, 'full'), 4)\n```\n\nSimilarly, using SuperSuit with PettingZoo environments looks like\n\n```\nfrom pettingzoo.butterfly import pistonball_v0\nenv = pistonball_v0.env()\n\nenv = frame_stack_v1(color_reduction_v0(env, 'full'), 4)\n```\n\n\n**Please note**: Once the planned wrapper rewrite of Gymnasium is complete and the vector API is stabilized, this project will be deprecated and rewritten as part of a new wrappers package in PettingZoo and the vectorized API will be redone, taking inspiration from the functionality currently in Gymnasium.\n\n## Installing SuperSuit\nTo install SuperSuit from pypi:\n\n```\npython3 -m venv env\nsource env/bin/activate\npip install --upgrade pip\npip install supersuit\n```\n\nAlternatively, to install SuperSuit from source, clone this repo, `cd` to it, and then:\n\n```\npython3 -m venv env\nsource env/bin/activate\npip install --upgrade pip\npip install -e .\n```\n\n## Citation\n\nIf you use this in your research, please cite:\n\n```\n@article{SuperSuit,\n  Title = {SuperSuit: Simple Microwrappers for Reinforcement Learning Environments},\n  Author = {Terry, J. K and Black, Benjamin and Hari, Ananth},\n  journal={arXiv preprint arXiv:2008.08932},\n  year={2020}\n}\n```\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "Wrappers for Gymnasium and PettingZoo",
    "version": "3.9.3",
    "project_urls": {
        "Bug Report": "https://github.com/Farama-Foundation/SuperSuit/issues",
        "Homepage": "https://farama.org",
        "Repository": "https://github.com/Farama-Foundation/SuperSuit"
    },
    "split_keywords": [
        "reinforcement learning",
        " game",
        " rl",
        " ai",
        " gymnasium"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "40aa63ba1c60e15334918abf1991ad1584d2dfc5760b352cba5cb98d61e7ef20",
                "md5": "10aaa1234ded2ff4b90b0e63c773177e",
                "sha256": "f30ab6fd9fe720ea7fa73d45a96935b6321c4ea1aa45d7997684c09f39aa10de"
            },
            "downloads": -1,
            "filename": "SuperSuit-3.9.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "10aaa1234ded2ff4b90b0e63c773177e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 50175,
            "upload_time": "2024-08-12T16:01:46",
            "upload_time_iso_8601": "2024-08-12T16:01:46.149412Z",
            "url": "https://files.pythonhosted.org/packages/40/aa/63ba1c60e15334918abf1991ad1584d2dfc5760b352cba5cb98d61e7ef20/SuperSuit-3.9.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bac574e32167c36bef901efa4b6c977711466f1bb1ad83a8fbd4603eee401b2a",
                "md5": "014aa0ee464832be2af2156bf8f21e90",
                "sha256": "10f5d0ed208ddb92fba767a7889ada9f46894519077527d6af799a7767a13159"
            },
            "downloads": -1,
            "filename": "supersuit-3.9.3.tar.gz",
            "has_sig": false,
            "md5_digest": "014aa0ee464832be2af2156bf8f21e90",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 34251,
            "upload_time": "2024-08-12T16:01:48",
            "upload_time_iso_8601": "2024-08-12T16:01:48.387644Z",
            "url": "https://files.pythonhosted.org/packages/ba/c5/74e32167c36bef901efa4b6c977711466f1bb1ad83a8fbd4603eee401b2a/supersuit-3.9.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-12 16:01:48",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Farama-Foundation",
    "github_project": "SuperSuit",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "supersuit"
}
        
Elapsed time: 0.78948s