# Supervised Matrix Factorization
This Python package contains source codes for algorithms for Supervised Matrix Factorization (SMF) in the papers [1] and [2]:
## Installation
To install the package, run the following command in your environment:
```
python3 -m pip install SupervisedMF
```
Check your installation by trying to import the main classes in this package:
```
>>> from SMF import SMF_BCD
>>> from SMF import SMF_LPGD
```
## Pytorch Version
If you are looking to use the Pytorch version of the Supervised Matrix Factorization algorithms, please first install `torch` and its related dependencies in your environment using the appropriate command from [the official installation page](https://pytorch.org/get-started/locally/).
For example, if you want to install `torch` for Linux with CUDA 12.1 using `pip`, run the following command:
```
pip3 install torch torchvision torchaudio
```
## References
[1] Lee, Joowon, Hanbaek Lyu, and Weixin Yao. [*"Exponentially convergent algorithms for supervised matrix factorization."*](https://papers.nips.cc/paper_files/paper/2023/hash/f2c80b3c9cf8102d38c4b21af25d9740-Abstract-Conference.html) Advances in Neural Information Processing Systems 36 (2024).
[2] Lee, Joowon, Hanbaek Lyu, and Weixin Yao. [*"Supervised Matrix Factorization: Local Landscape Analysis and Applications."*](https://proceedings.mlr.press/v235/lee24p.html) Forty-first International Conference on Machine Learning (2024).
Raw data
{
"_id": null,
"home_page": null,
"name": "SupervisedMF",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": "Agam Goyal <agamg2@illinois.edu>",
"keywords": "supervised matrix factorization, matrix factorization, dimensionality reduction, low-rank compression, classification",
"author": null,
"author_email": "Agam Goyal <agamg2@illinois.edu>, Yi Wei <ywei224@wisc.edu>, Hanbaek Lyu <hlyu@math.wisc.edu>",
"download_url": "https://files.pythonhosted.org/packages/93/46/2f66e9ffd45c74a7b8b1b57172906a51fdf638767bdaeecfccd360df0ca0/supervisedmf-0.0.4.tar.gz",
"platform": null,
"description": "# Supervised Matrix Factorization\n\nThis Python package contains source codes for algorithms for Supervised Matrix Factorization (SMF) in the papers [1] and [2]: \n\n## Installation\n\nTo install the package, run the following command in your environment:\n\n```\npython3 -m pip install SupervisedMF\n```\n\nCheck your installation by trying to import the main classes in this package:\n\n```\n>>> from SMF import SMF_BCD\n>>> from SMF import SMF_LPGD\n```\n\n## Pytorch Version\n\nIf you are looking to use the Pytorch version of the Supervised Matrix Factorization algorithms, please first install `torch` and its related dependencies in your environment using the appropriate command from [the official installation page](https://pytorch.org/get-started/locally/). \n\nFor example, if you want to install `torch` for Linux with CUDA 12.1 using `pip`, run the following command:\n\n```\npip3 install torch torchvision torchaudio\n```\n\n## References\n\n[1] Lee, Joowon, Hanbaek Lyu, and Weixin Yao. [*\"Exponentially convergent algorithms for supervised matrix factorization.\"*](https://papers.nips.cc/paper_files/paper/2023/hash/f2c80b3c9cf8102d38c4b21af25d9740-Abstract-Conference.html) Advances in Neural Information Processing Systems 36 (2024).\n\n[2] Lee, Joowon, Hanbaek Lyu, and Weixin Yao. [*\"Supervised Matrix Factorization: Local Landscape Analysis and Applications.\"*](https://proceedings.mlr.press/v235/lee24p.html) Forty-first International Conference on Machine Learning (2024).\n",
"bugtrack_url": null,
"license": null,
"summary": "A package for various supervised matrix factorization methods",
"version": "0.0.4",
"project_urls": {
"Homepage": "https://github.com/ljw9510/SMF/tree/main",
"Issues": "https://github.com/ljw9510/SMF/issues"
},
"split_keywords": [
"supervised matrix factorization",
" matrix factorization",
" dimensionality reduction",
" low-rank compression",
" classification"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "49fb0a4b6fffa9ad40d695e4014afbbbaf0d3c9d13e1756186e65525a3dc9dfd",
"md5": "2bd3da260751e4f325f935d6354ed651",
"sha256": "2b8f697bf011794e46bced79c18faa83e5015cc8760c1346f5887ebcddd990f7"
},
"downloads": -1,
"filename": "SupervisedMF-0.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "2bd3da260751e4f325f935d6354ed651",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 20905,
"upload_time": "2024-08-04T16:50:22",
"upload_time_iso_8601": "2024-08-04T16:50:22.066920Z",
"url": "https://files.pythonhosted.org/packages/49/fb/0a4b6fffa9ad40d695e4014afbbbaf0d3c9d13e1756186e65525a3dc9dfd/SupervisedMF-0.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "93462f66e9ffd45c74a7b8b1b57172906a51fdf638767bdaeecfccd360df0ca0",
"md5": "707b728aa5f12b257da506bd2de896d6",
"sha256": "629b84876b933fe0742907de5a1bd25b583f2a144e816ccbe6b89cc6eb471b31"
},
"downloads": -1,
"filename": "supervisedmf-0.0.4.tar.gz",
"has_sig": false,
"md5_digest": "707b728aa5f12b257da506bd2de896d6",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 20813,
"upload_time": "2024-08-04T16:50:23",
"upload_time_iso_8601": "2024-08-04T16:50:23.514701Z",
"url": "https://files.pythonhosted.org/packages/93/46/2f66e9ffd45c74a7b8b1b57172906a51fdf638767bdaeecfccd360df0ca0/supervisedmf-0.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-04 16:50:23",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ljw9510",
"github_project": "SMF",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "supervisedmf"
}