# TEflow
A python3 package for streamlining thermoelectric workflow from materials to devices
## Features
- Model carrier transport
- Single parabolic band (SPB) model
- Single Kane band (SKB) model
- Multiple bands model
- Customized band model
- Debye model of lattice thermal conductivity
- Calculations & Fitting
- Scattering Mechanisms, e.g., three-phonon, point defects, etc.
- Bipolar thermal conductivity
- Engineering performance of thermoelectric generator[^1]
- Engineering dimensionless figure of merit (ZT<sub>eng</sub>) and power factor (PF<sub>eng</sub>)
- Maximum Efficiency (η<sub>max</sub>) and ouput power density (P<sub>d</sub>)
- R<sub>L</sub>- (external electric load resistance) or I- (electric current density) dependent properties, e.g. output voltage (V), heat flux (Q<sub>hot</sub>)
- Device ZT of thermoelectric generator[^2]
- Maximum thermoelectric device efficiency
- Optimized relative current density $u$
- Thermoelectric potential $\Phi$
- Thermoelectric data manipulation
- Thermoelectric data interpolation and extrapolation
- Cut-off thermoelectric data at the threshold temperature
- Join and rearrange parallel data files
- Mix parallel data files with linear combination
<br/><br/>
#### References
[^1]: Kim, H. S., Liu, W., Chen, G., Chu, C. W., & Ren, Z. (2015). Relationship between thermoelectric figure of merit and energy conversion efficiency.
_Proceedings of the National Academy of Sciences_, 112(27), 8205-8210. DOI: [10.1073/pnas.1510231112](https://doi.org/10.1073/pnas.1510231112)
[^2]: Snyder, G. J., & Snyder, A. H. (2017). Figure of merit ZT of a thermoelectric device defined from materials properties.
_Energy & Environmental Science_, 10(11), 2280-2283. DOI: [10.1039/C7EE02007D](https://doi.org/10.1039/C7EE02007D)
Raw data
{
"_id": null,
"home_page": "https://github.com/JianboHIT/TEflow",
"name": "TEflow",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "thermoelectricity, simulation",
"author": "Jianbo ZHU",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/65/47/44fafc71cb50a8beb821b0311cb828393d620a2a1abea36e5b91caf7bf10/teflow-0.4.6.tar.gz",
"platform": null,
"description": "# TEflow\nA python3 package for streamlining thermoelectric workflow from materials to devices\n\n## Features\n- Model carrier transport\n - Single parabolic band (SPB) model\n - Single Kane band (SKB) model\n - Multiple bands model\n - Customized band model\n- Debye model of lattice thermal conductivity\n - Calculations & Fitting\n - Scattering Mechanisms, e.g., three-phonon, point defects, etc.\n - Bipolar thermal conductivity\n- Engineering performance of thermoelectric generator[^1]\n - Engineering dimensionless figure of merit (ZT<sub>eng</sub>) and power factor (PF<sub>eng</sub>)\n - Maximum Efficiency (\u03b7<sub>max</sub>) and ouput power density (P<sub>d</sub>)\n - R<sub>L</sub>- (external electric load resistance) or I- (electric current density) dependent properties, e.g. output voltage (V), heat flux (Q<sub>hot</sub>)\n- Device ZT of thermoelectric generator[^2]\n - Maximum thermoelectric device efficiency\n - Optimized relative current density $u$\n - Thermoelectric potential $\\Phi$\n- Thermoelectric data manipulation\n - Thermoelectric data interpolation and extrapolation\n - Cut-off thermoelectric data at the threshold temperature\n - Join and rearrange parallel data files\n - Mix parallel data files with linear combination\n\n<br/><br/>\n#### References\n\n[^1]: Kim, H. S., Liu, W., Chen, G., Chu, C. W., & Ren, Z. (2015). Relationship between thermoelectric figure of merit and energy conversion efficiency. \n_Proceedings of the National Academy of Sciences_, 112(27), 8205-8210. DOI: [10.1073/pnas.1510231112](https://doi.org/10.1073/pnas.1510231112)\n\n[^2]: Snyder, G. J., & Snyder, A. H. (2017). Figure of merit ZT of a thermoelectric device defined from materials properties. \n_Energy & Environmental Science_, 10(11), 2280-2283. DOI: [10.1039/C7EE02007D](https://doi.org/10.1039/C7EE02007D)\n",
"bugtrack_url": null,
"license": "Apache-2.0 license",
"summary": "A python3 package for thermoelectric output performance calculations",
"version": "0.4.6",
"project_urls": {
"Homepage": "https://github.com/JianboHIT/TEflow"
},
"split_keywords": [
"thermoelectricity",
" simulation"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "be44f545cd6398ed6b8187c6e62f206514202e01cc56d08a23401cc25c6e0c79",
"md5": "4f73026e579f859466f1a569d9a45c9f",
"sha256": "ae88706d26dccd3d64e2fd4110445ffe0bd79aa732948010b1a1601b243b1dd4"
},
"downloads": -1,
"filename": "teflow-0.4.6-py3-none-any.whl",
"has_sig": false,
"md5_digest": "4f73026e579f859466f1a569d9a45c9f",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 86240,
"upload_time": "2025-08-03T14:08:46",
"upload_time_iso_8601": "2025-08-03T14:08:46.362152Z",
"url": "https://files.pythonhosted.org/packages/be/44/f545cd6398ed6b8187c6e62f206514202e01cc56d08a23401cc25c6e0c79/teflow-0.4.6-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "654744fafc71cb50a8beb821b0311cb828393d620a2a1abea36e5b91caf7bf10",
"md5": "a606e59f4f6061826836fe4c34fb3db3",
"sha256": "d89ac793c0be34d79c0ce78315eb84a741a21da5cc72b133670ee35f19a2b541"
},
"downloads": -1,
"filename": "teflow-0.4.6.tar.gz",
"has_sig": false,
"md5_digest": "a606e59f4f6061826836fe4c34fb3db3",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 82058,
"upload_time": "2025-08-03T14:08:47",
"upload_time_iso_8601": "2025-08-03T14:08:47.499590Z",
"url": "https://files.pythonhosted.org/packages/65/47/44fafc71cb50a8beb821b0311cb828393d620a2a1abea36e5b91caf7bf10/teflow-0.4.6.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-03 14:08:47",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "JianboHIT",
"github_project": "TEflow",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "teflow"
}