# TFRE_python: A Tuning-Free Robust and Efficient Approach to High-dimensional Regression
This Python package provides functions to estimate the coefficients in high-dimensional linear regressions via a tuning-free and robust approach. The method was published in Lan Wang, Bo Peng, Jelena Bradic, Runze Li and Yunan Wu (2020) A tuning-free robust and efficient approach to high-dimensional regression. Journal of the American Statistical Association, 115, 1700-1714 (JASA’s discussion paper). See also Lan Wang, Bo Peng, Jelena Bradic, Runze Li and Yunan Wu (2020), Rejoinder to “A tuning-free robust and efficient approach to high-dimensional regression". Journal of the American Statistical Association, 115, 1726-1729.
You can preview the package documentation [here](https://rawcdn.githack.com/yunanwu123/TFRE_python/58029648199f9f4db1fc257bedacb0f2774102b0/doc/_build/html/index.html).
To install the package, please run the following command in Terminal:
```{python}
pip install git+https://github.com/yunanwu123/TFRE_python
```
This package requires the C++ template library [eigen3](https://eigen.tuxfamily.org/index.php?title=Main_Page). Please download it before installation.
## Reference
Wang, L., Peng, B., Bradic, J., Li, R. and Wu, Y. (2020), ***A Tuning-free Robust and Efficient Approach to High-dimensional Regression**, Journal of the American Statistical Association, 115:532, 1700-1714*, [doi:10.1080/01621459.2020.1840989](https://doi.org/10.1080/01621459.2020.1840989).
Wang, L., Peng, B., Bradic, J., Li, R. and Wu, Y. (2020), ***Rejoinder to 'A Tuning-Free Robust and Efficient Approach to High-Dimensional Regression'**, Journal of the American Statistical Association, 115:532, 1726-1729*, [doi:10.1080/01621459.2020.1843865](https://doi.org/10.1080/01621459.2020.1843865).
Peng, B. and Wang, L. (2015), ***An Iterative Coordinate Descent Algorithm for High-Dimensional Nonconvex Penalized Quantile Regression**, Journal of Computational and Graphical Statistics, 24:3, 676-694*, [doi:10.1080/10618600.2014.913516](https://doi.org/10.1080/10618600.2014.913516).
Clémençon, S., Colin, I., and Bellet, A. (2016), ***Scaling-up empirical risk minimization: optimization of incomplete u-statistics**, The Journal of Machine Learning Research, 17(1):2682–2717*, URL: [https://jmlr.org/papers/v17/15-012.html](https://jmlr.org/papers/v17/15-012.html).
Fan, J. and Li, R. (2001), ***Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties**, Journal of the American Statistical Association, 96:456, 1348-1360*, [doi:10.1198/016214501753382273](https://doi.org/10.1198/016214501753382273).
Raw data
{
"_id": null,
"home_page": "https://github.com/yunanwu123/TFRE_python",
"name": "TFRE",
"maintainer": "Yunan Wu",
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": "yunan.wu@utdallas.edu",
"keywords": "TFRE,high dimensional analysis",
"author": "Yunan Wu, Lan Wang",
"author_email": "yunan.wu@utdallas.edu, lanwang@mbs.miami.edu",
"download_url": "https://files.pythonhosted.org/packages/e5/5a/456bb8135f417c0384caee36d79448129dbb319afa9d4850444c4eec92c3/TFRE-0.0.0.1.tar.gz",
"platform": null,
"description": "# TFRE_python: A Tuning-Free Robust and Efficient Approach to High-dimensional Regression \n This Python package provides functions to estimate the coefficients in high-dimensional linear regressions via a tuning-free and robust approach. The method was published in Lan Wang, Bo Peng, Jelena Bradic, Runze Li and Yunan Wu (2020) A tuning-free robust and efficient approach to high-dimensional regression. Journal of the American Statistical Association, 115, 1700-1714 (JASA\u2019s discussion paper). See also Lan Wang, Bo Peng, Jelena Bradic, Runze Li and Yunan Wu (2020), Rejoinder to \u201cA tuning-free robust and efficient approach to high-dimensional regression\". Journal of the American Statistical Association, 115, 1726-1729.\n\nYou can preview the package documentation [here](https://rawcdn.githack.com/yunanwu123/TFRE_python/58029648199f9f4db1fc257bedacb0f2774102b0/doc/_build/html/index.html).\n\nTo install the package, please run the following command in Terminal: \n```{python} \npip install git+https://github.com/yunanwu123/TFRE_python\n```\nThis package requires the C++ template library [eigen3](https://eigen.tuxfamily.org/index.php?title=Main_Page). Please download it before installation.\n\n## Reference\n\nWang, L., Peng, B., Bradic, J., Li, R. and Wu, Y. (2020), ***A Tuning-free Robust and Efficient Approach to High-dimensional Regression**, Journal of the American Statistical Association, 115:532, 1700-1714*, [doi:10.1080/01621459.2020.1840989](https://doi.org/10.1080/01621459.2020.1840989).\n\nWang, L., Peng, B., Bradic, J., Li, R. and Wu, Y. (2020), ***Rejoinder to 'A Tuning-Free Robust and Efficient Approach to High-Dimensional Regression'**, Journal of the American Statistical Association, 115:532, 1726-1729*, [doi:10.1080/01621459.2020.1843865](https://doi.org/10.1080/01621459.2020.1843865).\n\nPeng, B. and Wang, L. (2015), ***An Iterative Coordinate Descent Algorithm for High-Dimensional Nonconvex Penalized Quantile Regression**, Journal of Computational and Graphical Statistics, 24:3, 676-694*, [doi:10.1080/10618600.2014.913516](https://doi.org/10.1080/10618600.2014.913516).\n\nCl\u00e9men\u00e7on, S., Colin, I., and Bellet, A. (2016), ***Scaling-up empirical risk minimization: optimization of incomplete u-statistics**, The Journal of Machine Learning Research, 17(1):2682\u20132717*, URL: [https://jmlr.org/papers/v17/15-012.html](https://jmlr.org/papers/v17/15-012.html).\n\nFan, J. and Li, R. (2001), ***Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties**, Journal of the American Statistical Association, 96:456, 1348-1360*, [doi:10.1198/016214501753382273](https://doi.org/10.1198/016214501753382273). \n",
"bugtrack_url": null,
"license": "MIT license",
"summary": "A Tuning-Free Robust and Efficient Approach to High-dimensional Regression",
"version": "0.0.0.1",
"project_urls": {
"Homepage": "https://github.com/yunanwu123/TFRE_python"
},
"split_keywords": [
"tfre",
"high dimensional analysis"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "c9bc29968b2ff7e9d55d88639e0a69f12ffbae6c454addd8fb499332dabeaa1d",
"md5": "8a70346cf1a6921fb0af6c8c64fd1014",
"sha256": "3f7a2b24e662e9ccffec18aed8d67f7ed05cf1a500e2bec0348b465e0f9d3238"
},
"downloads": -1,
"filename": "TFRE-0.0.0.1-cp310-cp310-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "8a70346cf1a6921fb0af6c8c64fd1014",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.10",
"size": 68720,
"upload_time": "2024-02-20T23:06:50",
"upload_time_iso_8601": "2024-02-20T23:06:50.294035Z",
"url": "https://files.pythonhosted.org/packages/c9/bc/29968b2ff7e9d55d88639e0a69f12ffbae6c454addd8fb499332dabeaa1d/TFRE-0.0.0.1-cp310-cp310-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e55a456bb8135f417c0384caee36d79448129dbb319afa9d4850444c4eec92c3",
"md5": "fdb2f5b2759ad92b866f4c1b699d10a4",
"sha256": "4d38933a7b758d588b2d36cb50b1ca5ab72e5cbfed4d18105db7557b294932ad"
},
"downloads": -1,
"filename": "TFRE-0.0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "fdb2f5b2759ad92b866f4c1b699d10a4",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 12429,
"upload_time": "2024-02-20T23:06:52",
"upload_time_iso_8601": "2024-02-20T23:06:52.797140Z",
"url": "https://files.pythonhosted.org/packages/e5/5a/456bb8135f417c0384caee36d79448129dbb319afa9d4850444c4eec92c3/TFRE-0.0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-02-20 23:06:52",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "yunanwu123",
"github_project": "TFRE_python",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "tfre"
}