TOPSIS-102103363


NameTOPSIS-102103363 JSON
Version 0.0.1 PyPI version JSON
download
home_page
SummaryA Python package to find TOPSIS for multi-criteria decision analysis method
upload_time2024-01-21 16:38:38
maintainer
docs_urlNone
authorYash Sharma
requires_python
licenseMIT
keywords topsis ucs538 tiet
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Topsis MCDM(Multi Criteria Decision Making)

CalcTopsis is a Python package implementing Topsis method sed for multi-criteria decision analysis.
Topsis stands for Technique for Order of Preference by Similarity to Ideal Solution

Just provide your input attributes and it will give you the results


## Installation

$ pip install TOPSIS-102103363==0.0.1

In the commandline, you can write as -
    $ python <package_name> <path to input_data_file_name> <weights as strings> <impacts as strings> <result_file_name>

E.g for input data file as data.csv, command will be like
    $ python topsis.py data.csv "1,1,1,1" "+,+,-,+" output.csv

This will print all the output attribute values along with the Rank column, in a tabular format

License -> MIT

Change Log
==========

0.0.1 (12/11/2020)
------------------
- First Release

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "TOPSIS-102103363",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "topsis,UCS538,TIET",
    "author": "Yash Sharma",
    "author_email": "yashsharma7752@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/ab/c0/bee4c66605667e7785d9139a5a7705e9c21454664135c9436d050fbceb6d/TOPSIS-102103363-0.0.1.tar.gz",
    "platform": null,
    "description": "Topsis MCDM(Multi Criteria Decision Making)\r\n\r\nCalcTopsis is a Python package implementing Topsis method sed for multi-criteria decision analysis.\r\nTopsis stands for Technique for Order of Preference by Similarity to Ideal Solution\r\n\r\nJust provide your input attributes and it will give you the results\r\n\r\n\r\n## Installation\r\n\r\n$ pip install TOPSIS-102103363==0.0.1\r\n\r\nIn the commandline, you can write as -\r\n    $ python <package_name> <path to input_data_file_name> <weights as strings> <impacts as strings> <result_file_name>\r\n\r\nE.g for input data file as data.csv, command will be like\r\n    $ python topsis.py data.csv \"1,1,1,1\" \"+,+,-,+\" output.csv\r\n\r\nThis will print all the output attribute values along with the Rank column, in a tabular format\r\n\r\nLicense -> MIT\r\n\r\nChange Log\r\n==========\r\n\r\n0.0.1 (12/11/2020)\r\n------------------\r\n- First Release\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Python package to find TOPSIS for multi-criteria decision analysis method",
    "version": "0.0.1",
    "project_urls": null,
    "split_keywords": [
        "topsis",
        "ucs538",
        "tiet"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "14510055135f8ea6a57b3342acf7ab85dfb4f701b35c24cfcc5fba0a7e50cfdd",
                "md5": "fe339c83409e358eee1ba71ebaf66548",
                "sha256": "a5792ba94284028544e62a704d8e7d3acd361fefb1fff0235324ee69f7f13f4a"
            },
            "downloads": -1,
            "filename": "TOPSIS_102103363-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fe339c83409e358eee1ba71ebaf66548",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 2595,
            "upload_time": "2024-01-21T16:38:36",
            "upload_time_iso_8601": "2024-01-21T16:38:36.765182Z",
            "url": "https://files.pythonhosted.org/packages/14/51/0055135f8ea6a57b3342acf7ab85dfb4f701b35c24cfcc5fba0a7e50cfdd/TOPSIS_102103363-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "abc0bee4c66605667e7785d9139a5a7705e9c21454664135c9436d050fbceb6d",
                "md5": "fb095371527b84b8750d85f62e420388",
                "sha256": "1ac58b516b780104065ae8c46369b58024efdb6145bd2edc2452af68ce38f843"
            },
            "downloads": -1,
            "filename": "TOPSIS-102103363-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "fb095371527b84b8750d85f62e420388",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 2433,
            "upload_time": "2024-01-21T16:38:38",
            "upload_time_iso_8601": "2024-01-21T16:38:38.840537Z",
            "url": "https://files.pythonhosted.org/packages/ab/c0/bee4c66605667e7785d9139a5a7705e9c21454664135c9436d050fbceb6d/TOPSIS-102103363-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-21 16:38:38",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "topsis-102103363"
}
        
Elapsed time: 0.16849s