TOPSIS-GIRIK-102003178


NameTOPSIS-GIRIK-102003178 JSON
Version 1.3.7 PyPI version JSON
download
home_pagehttps://www.github.com/girikgarg8
SummaryA Python package to find TOPSIS for multi-criteria decision analysis method
upload_time2023-01-18 09:43:09
maintainer
docs_urlNone
authorGirik Garg
requires_python
licenseMIT
keywords topsis ucs654 tiet
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # TOPSIS-Python

Submitted By: **Girik Garg 102003178**

***

## What is TOPSIS

**T**echnique for **O**rder **P**reference by **S**imilarity to **I**deal
**S**olution (TOPSIS) originated in the 1980s as a multi-criteria decision
making method. TOPSIS chooses the alternative of shortest Euclidean distance
from the ideal solution, and greatest distance from the negative-ideal
solution. More details at [wikipedia](https://en.wikipedia.org/wiki/TOPSIS).

<br>

## How to use this package:

TOPSIS-GIRIK-GARG-102003178  can be run as in the following example:


### In Command Prompt to run the code:
```
topsis data.csv "1,1,1,1" "+,+,-,+" out.csv
```
<br>

## Sample dataset

The decision matrix (`a`) should be constructed with each row representing a Model alternative, and each column representing a criterion like Fund Name , P1 ,P2 , P3 , P4 , P5.

Model | Correlation | R<sup>2</sup> | RMSE | Accuracy
------------ | ------------- | ------------ | ------------- | ------------
M1|	0.8	|0.64	|3.5	|37.5	|10.61
M2|	0.86	|0.74	|3.4	|42.2	|11.8
M3|	0.69	|0.48	|5.7	|70	|19.22
M4|	0.65	|0.42	|5.7	|65.5	|18.07
M5|	0.9	|0.81	|6.6	|39.1	|11.85
M6|	0.76	|0.58	|4	|53.5	|14.71
M7|	0.69	|0.48	|6.2	|51.3	|14.67
M8|	0.65	|0.42	|6	|50.2	|14.32



<br>

## Output

```
Row_NO	Performance_score	Rank
1	    0.436737	         7
2	    0.389937	         8
3	    0.565650             4
4	    0.590487	         3
5	    0.522924	         5
6	    0.451344	         6
7	    0.637889	         1
8	    0.635536	         2

```
<br>
The rankings are displayed in the form of a table using a package 'tabulate', with the 1st rank offering us the best decision, and last rank offering the worst decision making, according to TOPSIS method.

            

Raw data

            {
    "_id": null,
    "home_page": "https://www.github.com/girikgarg8",
    "name": "TOPSIS-GIRIK-102003178",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "topsis,UCS654,TIET",
    "author": "Girik Garg",
    "author_email": "girikgarg8@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/e5/f6/9fbd254f1cf4e418236e9d99cfa369fcd440b6f488e5291df7e4feff0a0b/TOPSIS-GIRIK-102003178-1.3.7.tar.gz",
    "platform": null,
    "description": "# TOPSIS-Python\r\n\r\nSubmitted By: **Girik Garg 102003178**\r\n\r\n***\r\n\r\n## What is TOPSIS\r\n\r\n**T**echnique for **O**rder **P**reference by **S**imilarity to **I**deal\r\n**S**olution (TOPSIS) originated in the 1980s as a multi-criteria decision\r\nmaking method. TOPSIS chooses the alternative of shortest Euclidean distance\r\nfrom the ideal solution, and greatest distance from the negative-ideal\r\nsolution. More details at [wikipedia](https://en.wikipedia.org/wiki/TOPSIS).\r\n\r\n<br>\r\n\r\n## How to use this package:\r\n\r\nTOPSIS-GIRIK-GARG-102003178  can be run as in the following example:\r\n\r\n\r\n### In Command Prompt to run the code:\r\n```\r\ntopsis data.csv \"1,1,1,1\" \"+,+,-,+\" out.csv\r\n```\r\n<br>\r\n\r\n## Sample dataset\r\n\r\nThe decision matrix (`a`) should be constructed with each row representing a Model alternative, and each column representing a criterion like Fund Name , P1 ,P2 , P3 , P4 , P5.\r\n\r\nModel | Correlation | R<sup>2</sup> | RMSE | Accuracy\r\n------------ | ------------- | ------------ | ------------- | ------------\r\nM1|\t0.8\t|0.64\t|3.5\t|37.5\t|10.61\r\nM2|\t0.86\t|0.74\t|3.4\t|42.2\t|11.8\r\nM3|\t0.69\t|0.48\t|5.7\t|70\t|19.22\r\nM4|\t0.65\t|0.42\t|5.7\t|65.5\t|18.07\r\nM5|\t0.9\t|0.81\t|6.6\t|39.1\t|11.85\r\nM6|\t0.76\t|0.58\t|4\t|53.5\t|14.71\r\nM7|\t0.69\t|0.48\t|6.2\t|51.3\t|14.67\r\nM8|\t0.65\t|0.42\t|6\t|50.2\t|14.32\r\n\r\n\r\n\r\n<br>\r\n\r\n## Output\r\n\r\n```\r\nRow_NO\tPerformance_score\tRank\r\n1\t    0.436737\t         7\r\n2\t    0.389937\t         8\r\n3\t    0.565650             4\r\n4\t    0.590487\t         3\r\n5\t    0.522924\t         5\r\n6\t    0.451344\t         6\r\n7\t    0.637889\t         1\r\n8\t    0.635536\t         2\r\n\r\n```\r\n<br>\r\nThe rankings are displayed in the form of a table using a package 'tabulate', with the 1st rank offering us the best decision, and last rank offering the worst decision making, according to TOPSIS method.\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Python package to find TOPSIS for multi-criteria decision analysis method",
    "version": "1.3.7",
    "split_keywords": [
        "topsis",
        "ucs654",
        "tiet"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e5f69fbd254f1cf4e418236e9d99cfa369fcd440b6f488e5291df7e4feff0a0b",
                "md5": "72c6850debc74757ae4b90c82d166314",
                "sha256": "9abb68700148c709050ae29b6cb733e30370e2b010756533c62116d1318e65ab"
            },
            "downloads": -1,
            "filename": "TOPSIS-GIRIK-102003178-1.3.7.tar.gz",
            "has_sig": false,
            "md5_digest": "72c6850debc74757ae4b90c82d166314",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 7040,
            "upload_time": "2023-01-18T09:43:09",
            "upload_time_iso_8601": "2023-01-18T09:43:09.503660Z",
            "url": "https://files.pythonhosted.org/packages/e5/f6/9fbd254f1cf4e418236e9d99cfa369fcd440b6f488e5291df7e4feff0a0b/TOPSIS-GIRIK-102003178-1.3.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-18 09:43:09",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "topsis-girik-102003178"
}
        
Elapsed time: 0.05192s