TOPSIS-MAHESH-MANI-102297002


NameTOPSIS-MAHESH-MANI-102297002 JSON
Version 1.0.0 PyPI version JSON
download
home_pagehttps://www.github.com/maheshmani13
SummaryA Python package to find TOPSIS for multi-criteria decision analysis method
upload_time2024-01-29 17:42:03
maintainer
docs_urlNone
authorMahesh Mani
requires_python
licenseMIT
keywords topsis ucs654 tiet
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # TOPSIS-Python

Submitted By: **MAHESH MANI 102297002**

***

## What is TOPSIS?

**T**echnique for **O**rder **P**reference by **S**imilarity to **I**deal
**S**olution (TOPSIS) originated in the 1980s as a multi-criteria decision-making method. TOPSIS chooses the alternative of the shortest Euclidean distance from the ideal solution and greatest distance from the negative-ideal solution. More details can be found on [Wikipedia](https://en.wikipedia.org/wiki/TOPSIS).

## How to use this package:

The TOPSIS-MAHESH-MANI-102297002 package can be run as shown in the following example:

### In Command Prompt to run the code:
```bash
topsis data.csv "1,1,1,1" "+,+,-,+" out.csv
```

## Sample dataset

```csv
Name    P1     P2    P3     P4    P5
M1      0.86   0.74  4.8    61.8  17.05
M2      0.83   0.69  6.6    48.5  14.16
M3      0.62   0.38  3.3    33    9.33
M4      0.83   0.69  6.4    45.5  13.36
M5      0.95   0.9   6.8    45    13.41
M6      0.61   0.37  3.6    36    10.15
M7      0.9    0.81  4.5    62.5  17.18
M8      0.89   0.79  4.7    38.9  11.32
```

## Output

```csv
Name  P1    P2    P3   P4    P5     Topsis Score       Rank
M1    0.86  0.74  4.8  61.8  17.05  0.7003233012352760  3
M2    0.83  0.69  6.6  48.5  14.16  0.6562533743146750  6
M3    0.62  0.38  3.3  33.0  9.33   0.0135325373752343  8
M4    0.83  0.69  6.4  45.5  13.36  0.6089902720065850  4
M5    0.95  0.9   6.8  45.0  13.41  0.7157691264417760  2
M6    0.61  0.37  3.6  36.0  10.15  0.07412480075376210 1
M7    0.9   0.81  4.5  62.5  17.18  0.711919899272116   7
M8    0.89  0.79  4.7  38.9  11.32  0.49267086270406500 5
```

## Explanation:

- **Name:** Identifies the alternatives.
- **P1, P2, P3, P4, P5:** Represents the performance values for each criterion.
- **Topsis Score:** The calculated TOPSIS score for each alternative.
- **Rank:** The ranking of each alternative based on the TOPSIS score.

Simply run the provided command in the Command Prompt, replacing the input data file name, weights, impacts, and result file name with your specific values. The output will be a new CSV file containing the results of the TOPSIS analysis.

            

Raw data

            {
    "_id": null,
    "home_page": "https://www.github.com/maheshmani13",
    "name": "TOPSIS-MAHESH-MANI-102297002",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "topsis,UCS654,TIET",
    "author": "Mahesh Mani",
    "author_email": "imaheshmani13@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/6a/0c/9c10d4c3b5dba5805bd0fbf1f16623f5076c8803426452fbc7d6208f5237/TOPSIS-MAHESH-MANI-102297002-1.0.0.tar.gz",
    "platform": null,
    "description": "# TOPSIS-Python\n\nSubmitted By: **MAHESH MANI 102297002**\n\n***\n\n## What is TOPSIS?\n\n**T**echnique for **O**rder **P**reference by **S**imilarity to **I**deal\n**S**olution (TOPSIS) originated in the 1980s as a multi-criteria decision-making method. TOPSIS chooses the alternative of the shortest Euclidean distance from the ideal solution and greatest distance from the negative-ideal solution. More details can be found on [Wikipedia](https://en.wikipedia.org/wiki/TOPSIS).\n\n## How to use this package:\n\nThe TOPSIS-MAHESH-MANI-102297002 package can be run as shown in the following example:\n\n### In Command Prompt to run the code:\n```bash\ntopsis data.csv \"1,1,1,1\" \"+,+,-,+\" out.csv\n```\n\n## Sample dataset\n\n```csv\nName    P1     P2    P3     P4    P5\nM1      0.86   0.74  4.8    61.8  17.05\nM2      0.83   0.69  6.6    48.5  14.16\nM3      0.62   0.38  3.3    33    9.33\nM4      0.83   0.69  6.4    45.5  13.36\nM5      0.95   0.9   6.8    45    13.41\nM6      0.61   0.37  3.6    36    10.15\nM7      0.9    0.81  4.5    62.5  17.18\nM8      0.89   0.79  4.7    38.9  11.32\n```\n\n## Output\n\n```csv\nName  P1    P2    P3   P4    P5     Topsis Score       Rank\nM1    0.86  0.74  4.8  61.8  17.05  0.7003233012352760  3\nM2    0.83  0.69  6.6  48.5  14.16  0.6562533743146750  6\nM3    0.62  0.38  3.3  33.0  9.33   0.0135325373752343  8\nM4    0.83  0.69  6.4  45.5  13.36  0.6089902720065850  4\nM5    0.95  0.9   6.8  45.0  13.41  0.7157691264417760  2\nM6    0.61  0.37  3.6  36.0  10.15  0.07412480075376210 1\nM7    0.9   0.81  4.5  62.5  17.18  0.711919899272116   7\nM8    0.89  0.79  4.7  38.9  11.32  0.49267086270406500 5\n```\n\n## Explanation:\n\n- **Name:** Identifies the alternatives.\n- **P1, P2, P3, P4, P5:** Represents the performance values for each criterion.\n- **Topsis Score:** The calculated TOPSIS score for each alternative.\n- **Rank:** The ranking of each alternative based on the TOPSIS score.\n\nSimply run the provided command in the Command Prompt, replacing the input data file name, weights, impacts, and result file name with your specific values. The output will be a new CSV file containing the results of the TOPSIS analysis.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Python package to find TOPSIS for multi-criteria decision analysis method",
    "version": "1.0.0",
    "project_urls": {
        "Homepage": "https://www.github.com/maheshmani13"
    },
    "split_keywords": [
        "topsis",
        "ucs654",
        "tiet"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3cc0cd4b557f14b6888e4e995d9ff8b02ffcfa1136699812240b8e5ee50f258c",
                "md5": "b3e661bbc071f3ee3a75c15a94fcff65",
                "sha256": "473c7f9e860e7380259cac7a7177bdbbe537bb71c55087924e97bcbe69d6db94"
            },
            "downloads": -1,
            "filename": "TOPSIS_MAHESH_MANI_102297002-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b3e661bbc071f3ee3a75c15a94fcff65",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 4799,
            "upload_time": "2024-01-29T17:42:01",
            "upload_time_iso_8601": "2024-01-29T17:42:01.501875Z",
            "url": "https://files.pythonhosted.org/packages/3c/c0/cd4b557f14b6888e4e995d9ff8b02ffcfa1136699812240b8e5ee50f258c/TOPSIS_MAHESH_MANI_102297002-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6a0c9c10d4c3b5dba5805bd0fbf1f16623f5076c8803426452fbc7d6208f5237",
                "md5": "b910a29a758fd3d65375510b40fde855",
                "sha256": "d8add6dbcdffaeaf593dfad05b6fe6ef30b03f84a4757aafe14ecb2e81e817ba"
            },
            "downloads": -1,
            "filename": "TOPSIS-MAHESH-MANI-102297002-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "b910a29a758fd3d65375510b40fde855",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4510,
            "upload_time": "2024-01-29T17:42:03",
            "upload_time_iso_8601": "2024-01-29T17:42:03.806348Z",
            "url": "https://files.pythonhosted.org/packages/6a/0c/9c10d4c3b5dba5805bd0fbf1f16623f5076c8803426452fbc7d6208f5237/TOPSIS-MAHESH-MANI-102297002-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-29 17:42:03",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "topsis-mahesh-mani-102297002"
}
        
Elapsed time: 0.22857s