TOPSIS-Sahil-Rohilla-102183056


NameTOPSIS-Sahil-Rohilla-102183056 JSON
Version 1.0.4 PyPI version JSON
download
home_pagehttps://github.com/SahilRo/TOPSIS-Sahil-102183056
SummaryA Topsis package that takes inputs as CSV and generates scores in results CSV!
upload_time2023-01-22 22:55:02
maintainer
docs_urlNone
authorSahil
requires_python
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            **TOPSIS_102183056**

TOPSIS method for multiple-criteria decision making (MCDM)

**What is TOPSIS?**

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) originated in the 1980s as a multi-criteria decision making method. TOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution, and greatest distance from the negative-ideal solution.


## 🔗 Usage
topsis data.csv "1,1,1,1" "+,+,-,+" result.csv

## 🔗 Input File(data.csv)

Model	Correlation	R2	RMSE	Accuracy

M1	0.79	0.62	1.25	60.89

M2	0.66	0.44	2.89	63.07

M3	0.56	0.31	1.57	62.87

M4	0.82	0.67	2.68	70.19

M5	0.75	0.56	1.3	80.39

## 🔗 Output File(result.csv)

Model	Correlation	R2	RMSE	Accuracy	Topsis_score	Rank

M1	0.79	0.62	1.25	60.89	0.7722	2

M2	0.66	0.44	2.89	63.07	0.2255	5

M3	0.56	0.31	1.57	62.87	0.4388	4

M4	0.82	0.67	2.68	70.19	0.5238	3

M5	0.75	0.56	1.3	80.39	0.8113	1

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/SahilRo/TOPSIS-Sahil-102183056",
    "name": "TOPSIS-Sahil-Rohilla-102183056",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Sahil",
    "author_email": "ssahil1_be20@thapar.edu",
    "download_url": "https://files.pythonhosted.org/packages/a6/4e/24cee8f4567fad999c9186c88b45e4a4e3a818ba23bb0c254a61c86d40a3/TOPSIS-Sahil_Rohilla-102183056-1.0.4.tar.gz",
    "platform": null,
    "description": "**TOPSIS_102183056**\r\n\r\nTOPSIS method for multiple-criteria decision making (MCDM)\r\n\r\n**What is TOPSIS?**\r\n\r\nTechnique for Order Preference by Similarity to Ideal Solution (TOPSIS) originated in the 1980s as a multi-criteria decision making method. TOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution, and greatest distance from the negative-ideal solution.\r\n\r\n\r\n## \u00f0\u0178\u201d\u2014 Usage\r\ntopsis data.csv \"1,1,1,1\" \"+,+,-,+\" result.csv\r\n\r\n## \u00f0\u0178\u201d\u2014 Input File(data.csv)\r\n\r\nModel\tCorrelation\tR2\tRMSE\tAccuracy\r\n\r\nM1\t0.79\t0.62\t1.25\t60.89\r\n\r\nM2\t0.66\t0.44\t2.89\t63.07\r\n\r\nM3\t0.56\t0.31\t1.57\t62.87\r\n\r\nM4\t0.82\t0.67\t2.68\t70.19\r\n\r\nM5\t0.75\t0.56\t1.3\t80.39\r\n\r\n## \u00f0\u0178\u201d\u2014 Output File(result.csv)\r\n\r\nModel\tCorrelation\tR2\tRMSE\tAccuracy\tTopsis_score\tRank\r\n\r\nM1\t0.79\t0.62\t1.25\t60.89\t0.7722\t2\r\n\r\nM2\t0.66\t0.44\t2.89\t63.07\t0.2255\t5\r\n\r\nM3\t0.56\t0.31\t1.57\t62.87\t0.4388\t4\r\n\r\nM4\t0.82\t0.67\t2.68\t70.19\t0.5238\t3\r\n\r\nM5\t0.75\t0.56\t1.3\t80.39\t0.8113\t1\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "A Topsis package that takes inputs as CSV and generates scores in results CSV!",
    "version": "1.0.4",
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b6ca47fe5ae10af284b94ce83320b2208e5125987fa75c36839050f00e8657ad",
                "md5": "e1b3d4f419b42fee1e139d1dc06ed1d0",
                "sha256": "5041d16b7bd65b162533e8628dfe24619cd12e52738a3e1534187cd22d2e1182"
            },
            "downloads": -1,
            "filename": "TOPSIS_Sahil_Rohilla_102183056-1.0.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e1b3d4f419b42fee1e139d1dc06ed1d0",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 4450,
            "upload_time": "2023-01-22T22:55:00",
            "upload_time_iso_8601": "2023-01-22T22:55:00.447348Z",
            "url": "https://files.pythonhosted.org/packages/b6/ca/47fe5ae10af284b94ce83320b2208e5125987fa75c36839050f00e8657ad/TOPSIS_Sahil_Rohilla_102183056-1.0.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a64e24cee8f4567fad999c9186c88b45e4a4e3a818ba23bb0c254a61c86d40a3",
                "md5": "53159bb699629bafced663dc16acb2bb",
                "sha256": "3b1933df779d3f01e51663d5f62b797945ced519e3e646b0986eced909cc8f14"
            },
            "downloads": -1,
            "filename": "TOPSIS-Sahil_Rohilla-102183056-1.0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "53159bb699629bafced663dc16acb2bb",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 3984,
            "upload_time": "2023-01-22T22:55:02",
            "upload_time_iso_8601": "2023-01-22T22:55:02.907459Z",
            "url": "https://files.pythonhosted.org/packages/a6/4e/24cee8f4567fad999c9186c88b45e4a4e3a818ba23bb0c254a61c86d40a3/TOPSIS-Sahil_Rohilla-102183056-1.0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-22 22:55:02",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "SahilRo",
    "github_project": "TOPSIS-Sahil-102183056",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "topsis-sahil-rohilla-102183056"
}
        
Elapsed time: 0.03824s