TOPSIS-Sort-B


NameTOPSIS-Sort-B JSON
Version 1.0.4 PyPI version JSON
download
home_pageNone
SummaryTopsis-Sort-B package
upload_time2024-03-21 17:50:45
maintainerNone
docs_urlNone
authorgilbertomoj
requires_pythonNone
licenseNone
keywords python topsis topsis-sort-b
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Topsis Sort B - LIB PYPI

 The TOPSIS-Sort-B is an enhanced variation of the TOPSIS-Sort method, designed to address classification and sorting problems in multiple criteria decision-making. In this method, boundary profiles are employed to determine categorization classes and to sort alternatives based on the proximity of their proximity coefficients to the established profiles.

## Tecnologias usads
| Tecnologias | Versão  | Install                               |
|-------------|---------|---------------------------------------|
| Python      | 3.12.1  | `pip install python==3.12.1`          |
| Numpy       | 1.26.4  | `pip install numpy==1.26.4`           |
| Pandas      | 2.2.1   | `pip install pandas==2.2.1`           |


## Installtion
1. Install the required dependencies by running the following command: pip `pip install topsisSortLib`
## How to Run the Application
1. After installing the package, import the library.
2. from topsisSortLib import topsis_b_sort_profile_classification

## How to Use
1. To utilize the topsis_b_sort_profile_classification function, follow these steps:
2. Import pandas: Begin by importing the pandas library as pd.
  # How to Use

To utilize the `topsis_b_sort_profile_classification` function, follow these steps:

1. **Import pandas**: Begin by importing the pandas library.

    ```python
    import pandas as pd
    ```

2. **Load CSV File**: Load your CSV file into a pandas DataFrame using `pd.read_csv()`.

    ```python
    df = pd.read_csv('your_file.csv')
    ```

3. **Clean Data**: Clean the DataFrame by converting all non-numeric values to numeric using `pd.to_numeric()` and filling any missing values with zero.

    ```python
    df = df.apply(pd.to_numeric, errors='coerce').fillna(0)
    ```

4. **Call Function**: Pass the cleaned DataFrame along with other necessary arguments into the `topsis_b_sort_profile_classification` function.

    ```python
    result = topsis_b_sort_profile_classification(
        decision_matrix=df,
        domain_matrix=your_domain_matrix,
        dominant_profiles=your_dominant_profiles,
        weights=your_weights
    )
    ```

Make sure to replace `your_file.csv`, `your_domain_matrix`, `your_dominant_profiles`, and `your_weights` with the appropriate variables or data structures.

  `
## References

- Silva, D. F. L., & Filho, A. T. A. (2020). Sorting with TOPSIS through boundary and characteristic profiles. Journal Name, Volume(1), 141.
- GeeksforGeeks.TOPSIS method for Multiple-Criteria Decision Making (MCDM). Retrieved from [[URL](https://www.geeksforgeeks.org/topsis-method-for-multiple-criteria-decision-making-mcdm/)]

## Deploy
- Aplicação
- library [[URL](https://pypi.org/project/topsisSortLib/)]

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "TOPSIS-Sort-B",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "python, topsis, topsis-sort-b",
    "author": "gilbertomoj",
    "author_email": "gibamedeirosgc@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/86/82/04ad028976c618f7d37486adff2722bd96b281add173d6f540ac44dedd11/TOPSIS_Sort_B-1.0.4.tar.gz",
    "platform": null,
    "description": "# Topsis Sort B - LIB PYPI\r\n\r\n The TOPSIS-Sort-B is an enhanced variation of the TOPSIS-Sort method, designed to address classification and sorting problems in multiple criteria decision-making. In this method, boundary profiles are employed to determine categorization classes and to sort alternatives based on the proximity of their proximity coefficients to the established profiles.\r\n\r\n## Tecnologias usads\r\n| Tecnologias | Vers\u00e3o  | Install                               |\r\n|-------------|---------|---------------------------------------|\r\n| Python      | 3.12.1  | `pip install python==3.12.1`          |\r\n| Numpy       | 1.26.4  | `pip install numpy==1.26.4`           |\r\n| Pandas      | 2.2.1   | `pip install pandas==2.2.1`           |\r\n\r\n\r\n## Installtion\r\n1. Install the required dependencies by running the following command: pip `pip install topsisSortLib`\r\n## How to Run the Application\r\n1. After installing the package, import the library.\r\n2. from topsisSortLib import topsis_b_sort_profile_classification\r\n\r\n## How to Use\r\n1. To utilize the topsis_b_sort_profile_classification function, follow these steps:\r\n2. Import pandas: Begin by importing the pandas library as pd.\r\n  # How to Use\r\n\r\nTo utilize the `topsis_b_sort_profile_classification` function, follow these steps:\r\n\r\n1. **Import pandas**: Begin by importing the pandas library.\r\n\r\n    ```python\r\n    import pandas as pd\r\n    ```\r\n\r\n2. **Load CSV File**: Load your CSV file into a pandas DataFrame using `pd.read_csv()`.\r\n\r\n    ```python\r\n    df = pd.read_csv('your_file.csv')\r\n    ```\r\n\r\n3. **Clean Data**: Clean the DataFrame by converting all non-numeric values to numeric using `pd.to_numeric()` and filling any missing values with zero.\r\n\r\n    ```python\r\n    df = df.apply(pd.to_numeric, errors='coerce').fillna(0)\r\n    ```\r\n\r\n4. **Call Function**: Pass the cleaned DataFrame along with other necessary arguments into the `topsis_b_sort_profile_classification` function.\r\n\r\n    ```python\r\n    result = topsis_b_sort_profile_classification(\r\n        decision_matrix=df,\r\n        domain_matrix=your_domain_matrix,\r\n        dominant_profiles=your_dominant_profiles,\r\n        weights=your_weights\r\n    )\r\n    ```\r\n\r\nMake sure to replace `your_file.csv`, `your_domain_matrix`, `your_dominant_profiles`, and `your_weights` with the appropriate variables or data structures.\r\n\r\n  `\r\n## References\r\n\r\n- Silva, D. F. L., & Filho, A. T. A. (2020). Sorting with TOPSIS through boundary and characteristic profiles. Journal Name, Volume(1), 141.\r\n- GeeksforGeeks.TOPSIS method for Multiple-Criteria Decision Making (MCDM). Retrieved from [[URL](https://www.geeksforgeeks.org/topsis-method-for-multiple-criteria-decision-making-mcdm/)]\r\n\r\n## Deploy\r\n- Aplica\u00e7\u00e3o\r\n- library [[URL](https://pypi.org/project/topsisSortLib/)]\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Topsis-Sort-B package",
    "version": "1.0.4",
    "project_urls": null,
    "split_keywords": [
        "python",
        " topsis",
        " topsis-sort-b"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "868204ad028976c618f7d37486adff2722bd96b281add173d6f540ac44dedd11",
                "md5": "412aa968659cb493263dcb8bdbaab2ee",
                "sha256": "2c582456ee85d45a025f2a5418f8584be42590bbc814ef249ada008bf8750b1f"
            },
            "downloads": -1,
            "filename": "TOPSIS_Sort_B-1.0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "412aa968659cb493263dcb8bdbaab2ee",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4438,
            "upload_time": "2024-03-21T17:50:45",
            "upload_time_iso_8601": "2024-03-21T17:50:45.689711Z",
            "url": "https://files.pythonhosted.org/packages/86/82/04ad028976c618f7d37486adff2722bd96b281add173d6f540ac44dedd11/TOPSIS_Sort_B-1.0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-21 17:50:45",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "topsis-sort-b"
}
        
Elapsed time: 4.42744s