TensorPG


NameTensorPG JSON
Version 0.0.3 PyPI version JSON
download
home_pagehttps://github.com/Shivam-21-11/Tf-Model-Packages
SummaryVarious Deep Learning Models (tensorflow)
upload_time2023-02-11 06:13:30
maintainer
docs_urlNone
authorShivam Singh
requires_python
licenseMIT
keywords machine learning computer vision generative adversarial networks deep learning transformer nlp
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Tensorflow Model Playground

- Different tensorflow Deep Learning model & Helper Function.
- Currently Included Generative Adversarial Networks , some helper function and Transformer.

## Usage Example
### Generative Adversarial Networks
* Simple CycleGAN

```python
from modelpg.GAN import build_generator , build_descriminator , composite_model,train_model
generator_1 = build_generator(image_shape=(256,256))
generator_2 = build_generator(image_shape=(256,256))

descriminator_1 = build_descriminator(image_shape=(256,256))
descriminator_2 = build_descriminator(image_shape=(256,256))

composite_1 = composite_model(generator_1,descriminator_1,generator_2,image_shape=(256,256))
composite_2 = composite_model(generator_2,descriminator_2,generator_1,image_shape=(256,256))

train_model(descriminator_1,descriminator_2,generator_1,generator_2,composite_1,composite_2,dataset,epochs=100)
```

- After training use each generator to generate images.


### Transformer
```python
from modelpg.Transformer import Transformer
num_layers = 4
d_model = 512
dff = 4
num_heads = 8
dropout_rate = 0.5
tf = Transformer(num_layers=num_layers,
                num_heads=num_heads,
                d_model = d_model,
                forward_expansion=dff,
                inpt_vocab_size=2000,
                tar_vocab_size=2000,
                dropout=dropout_rate)
```
Train this transformer using custom training loop or by `.fit()` method.
**Note : `.fit` would take ((query , key),value) as parameter here X = (query,key) & Y = (value).**

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Shivam-21-11/Tf-Model-Packages",
    "name": "TensorPG",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "Machine Learning,Computer Vision,Generative adversarial networks,Deep Learning,Transformer,NLP",
    "author": "Shivam Singh",
    "author_email": "Shivamsingh2111@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/2a/bc/220ac10b2866ce196093f809272adb1692a86132849470ce1e099d60fc6a/TensorPG-0.0.3.tar.gz",
    "platform": null,
    "description": "# Tensorflow Model Playground\r\n\r\n- Different tensorflow Deep Learning model & Helper Function.\r\n- Currently Included Generative Adversarial Networks , some helper function and Transformer.\r\n\r\n## Usage Example\r\n### Generative Adversarial Networks\r\n* Simple CycleGAN\r\n\r\n```python\r\nfrom modelpg.GAN import build_generator , build_descriminator , composite_model,train_model\r\ngenerator_1 = build_generator(image_shape=(256,256))\r\ngenerator_2 = build_generator(image_shape=(256,256))\r\n\r\ndescriminator_1 = build_descriminator(image_shape=(256,256))\r\ndescriminator_2 = build_descriminator(image_shape=(256,256))\r\n\r\ncomposite_1 = composite_model(generator_1,descriminator_1,generator_2,image_shape=(256,256))\r\ncomposite_2 = composite_model(generator_2,descriminator_2,generator_1,image_shape=(256,256))\r\n\r\ntrain_model(descriminator_1,descriminator_2,generator_1,generator_2,composite_1,composite_2,dataset,epochs=100)\r\n```\r\n\r\n- After training use each generator to generate images.\r\n\r\n\r\n### Transformer\r\n```python\r\nfrom modelpg.Transformer import Transformer\r\nnum_layers = 4\r\nd_model = 512\r\ndff = 4\r\nnum_heads = 8\r\ndropout_rate = 0.5\r\ntf = Transformer(num_layers=num_layers,\r\n                num_heads=num_heads,\r\n                d_model = d_model,\r\n                forward_expansion=dff,\r\n                inpt_vocab_size=2000,\r\n                tar_vocab_size=2000,\r\n                dropout=dropout_rate)\r\n```\r\nTrain this transformer using custom training loop or by `.fit()` method.\r\n**Note : `.fit` would take ((query , key),value) as parameter here X = (query,key) & Y = (value).**\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Various Deep Learning Models (tensorflow)",
    "version": "0.0.3",
    "split_keywords": [
        "machine learning",
        "computer vision",
        "generative adversarial networks",
        "deep learning",
        "transformer",
        "nlp"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "97b087d1cd5c2b9fdb24ecfbb2cd276860b2f5625c2d22fe4ac75bdeaa7c4a23",
                "md5": "bc993bf01c09e15d7d8543655f72691f",
                "sha256": "aea31553a10f4d2a926edd3451854d12e2dd52f3b4c903bf192303f3686bbfc8"
            },
            "downloads": -1,
            "filename": "TensorPG-0.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "bc993bf01c09e15d7d8543655f72691f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 9092,
            "upload_time": "2023-02-11T06:13:28",
            "upload_time_iso_8601": "2023-02-11T06:13:28.983959Z",
            "url": "https://files.pythonhosted.org/packages/97/b0/87d1cd5c2b9fdb24ecfbb2cd276860b2f5625c2d22fe4ac75bdeaa7c4a23/TensorPG-0.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2abc220ac10b2866ce196093f809272adb1692a86132849470ce1e099d60fc6a",
                "md5": "7782e945973b97bdd02b2d568647edad",
                "sha256": "12a87d6098be7d13cdbbe4dbde72e3b45171c3e6fc24068fd47eb764e9f763ad"
            },
            "downloads": -1,
            "filename": "TensorPG-0.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "7782e945973b97bdd02b2d568647edad",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 7987,
            "upload_time": "2023-02-11T06:13:30",
            "upload_time_iso_8601": "2023-02-11T06:13:30.848935Z",
            "url": "https://files.pythonhosted.org/packages/2a/bc/220ac10b2866ce196093f809272adb1692a86132849470ce1e099d60fc6a/TensorPG-0.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-02-11 06:13:30",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "Shivam-21-11",
    "github_project": "Tf-Model-Packages",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "tensorpg"
}
        
Elapsed time: 0.04567s