TimeMurmur


NameTimeMurmur JSON
Version 0.1.3 PyPI version JSON
download
home_page
SummaryTime series forecasting at scale with LightGBM
upload_time2023-12-04 15:52:59
maintainer
docs_urlNone
authorTyler Blume
requires_python
license
keywords forecasting time series lightgbm
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # TimeMurmur
Requires the forecast period is the same for all time series.
## Quickstart
```
pip install TimeMurmur
```
Get example dataset and ensure the date column is Datetime:
```
from TimeMurmur.utils.utility_functions import get_data
train_df = get_data()
train_df['Datetime'] = pd.to_datetime(train_df['Datetime'])
```
This dataset is a subset of the weekly data from M4, it includes the required ID, Datetime, and History columns.

The most basic model you can fit is:
```
murmur = Murmur(floor=0)
fitted = murmur.fit(train_df,
                    target_column='History',
                    id_column='ID',
                    date_column='Datetime',
                    freq='W')
predicted = murmur.predict(20)
```
These parameters are required, the freq is 'W' for Weekly following standard frequency nomenclature.
You can take a look with the helper function:
```
for i in range(3):
    murmur.plot(fitted, predicted=predicted, murmur_id=i)
```
## Adding AR Lags
In order to do recursive forecasting utilizing past values, just pass a list of lags you want to the ar parameter:
```
murmur = Murmur(floor=0)
fitted = murmur.fit(train_df,
                    target_column='History',
                    id_column='ID',
                    date_column='Datetime',
                    freq='W',
                    n_basis=[10],
                    ar=[1,2,3,4])
predicted = murmur.predict(20)
```
Here we use a linear basis function with 4 ar lags passed as a list.
## Adding Seasonality
Seasonality works similar to the ar lags. We can pass multiple seasonal periods in a list if we have multiple seasonalities to account for.
```
murmur = Murmur(floor=0)
fitted = murmur.fit(train_df,
                    target_column='History',
                    id_column='ID',
                    date_column='Datetime',
                    freq='W',
                    n_basis=[10],
                    ar=[1,2,3,4],
                    seasonal_period=[4,52])
predicted = murmur.predict(20)
```
## LightGBM Parameters
You can pass a few of the most influential LightGBM parameters to fit such as `num_iterations` and `num_leaves`:
```
murmur = Murmur(floor=0)
fitted = murmur.fit(train_df,
                    target_column='History',
                    id_column='ID',
                    date_column='Datetime',
                    freq='W',
                    n_basis=[10],
                    ar=[1,2,3,4],
                    seasonal_period=[4,52],
                    num_iterations=100,
                    learning_rate=.1,
                    num_leaves=31)
predicted = murmur.predict(20)
```
## Fitting with category exogenous.
This is a 'ID' axis variable since it never changes across time only across IDs. Since it is a string we pass it to 'categorical_columns' as well.
```
murmur = Murmur(floor=0)
fitted = murmur.fit(train_df,
                    target_column='History',
                    id_column='ID',
                    date_column='Datetime',
                    freq='W',
                    n_basis=[10],
                    ar=[1,2,3,4],
                    seasonal_period=[4,52],
                    num_iterations=100,
                    learning_rate=.1,
                    num_leaves=31,
                    categorical_columns=['category'],
                    id_feature_columns=['category'])
predicted = murmur.predict(20)
```
## Fitting Quantiles
To fit quantiles pass `quantile` for `objective` and the desired quantile percentage to `alpha`.
```
murmur = Murmur(floor=0)
fitted = murmur.fit(train_df,
                    target_column='History',
                    id_column='ID',
                    date_column='Datetime',
                    freq='W',
                    n_basis=[10],
                    ar=[1,2,3,4],
                    seasonal_period=[4,52],
                    num_iterations=100,
                    learning_rate=.1,
                    num_leaves=31,
                    objective='quantile',
                    alpha=.9)
predicted = murmur.predict(20)
```

## Explanations with Shapley

```
#get shapley values of predictions
predicted_shap_vals = murmur.explain_predictions(predicted)
fitted_shap_vals = murmur.explain_fitted(fitted)
#plot using shapley values
murmur.plot_explanations(fitted_shap_vals=fitted_shap_vals,
                         predicted_shap_vals=predicted_shap_vals,
                         murmur_id=0)
```


            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "TimeMurmur",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "forecasting,time series,lightgbm",
    "author": "Tyler Blume",
    "author_email": "tblume@mail.USF.edu",
    "download_url": "",
    "platform": null,
    "description": "# TimeMurmur\nRequires the forecast period is the same for all time series.\n## Quickstart\n```\npip install TimeMurmur\n```\nGet example dataset and ensure the date column is Datetime:\n```\nfrom TimeMurmur.utils.utility_functions import get_data\ntrain_df = get_data()\ntrain_df['Datetime'] = pd.to_datetime(train_df['Datetime'])\n```\nThis dataset is a subset of the weekly data from M4, it includes the required ID, Datetime, and History columns.\n\nThe most basic model you can fit is:\n```\nmurmur = Murmur(floor=0)\nfitted = murmur.fit(train_df,\n                    target_column='History',\n                    id_column='ID',\n                    date_column='Datetime',\n                    freq='W')\npredicted = murmur.predict(20)\n```\nThese parameters are required, the freq is 'W' for Weekly following standard frequency nomenclature.\nYou can take a look with the helper function:\n```\nfor i in range(3):\n    murmur.plot(fitted, predicted=predicted, murmur_id=i)\n```\n## Adding AR Lags\nIn order to do recursive forecasting utilizing past values, just pass a list of lags you want to the ar parameter:\n```\nmurmur = Murmur(floor=0)\nfitted = murmur.fit(train_df,\n                    target_column='History',\n                    id_column='ID',\n                    date_column='Datetime',\n                    freq='W',\n                    n_basis=[10],\n                    ar=[1,2,3,4])\npredicted = murmur.predict(20)\n```\nHere we use a linear basis function with 4 ar lags passed as a list.\n## Adding Seasonality\nSeasonality works similar to the ar lags. We can pass multiple seasonal periods in a list if we have multiple seasonalities to account for.\n```\nmurmur = Murmur(floor=0)\nfitted = murmur.fit(train_df,\n                    target_column='History',\n                    id_column='ID',\n                    date_column='Datetime',\n                    freq='W',\n                    n_basis=[10],\n                    ar=[1,2,3,4],\n                    seasonal_period=[4,52])\npredicted = murmur.predict(20)\n```\n## LightGBM Parameters\nYou can pass a few of the most influential LightGBM parameters to fit such as `num_iterations` and `num_leaves`:\n```\nmurmur = Murmur(floor=0)\nfitted = murmur.fit(train_df,\n                    target_column='History',\n                    id_column='ID',\n                    date_column='Datetime',\n                    freq='W',\n                    n_basis=[10],\n                    ar=[1,2,3,4],\n                    seasonal_period=[4,52],\n                    num_iterations=100,\n                    learning_rate=.1,\n                    num_leaves=31)\npredicted = murmur.predict(20)\n```\n## Fitting with category exogenous.\nThis is a 'ID' axis variable since it never changes across time only across IDs. Since it is a string we pass it to 'categorical_columns' as well.\n```\nmurmur = Murmur(floor=0)\nfitted = murmur.fit(train_df,\n                    target_column='History',\n                    id_column='ID',\n                    date_column='Datetime',\n                    freq='W',\n                    n_basis=[10],\n                    ar=[1,2,3,4],\n                    seasonal_period=[4,52],\n                    num_iterations=100,\n                    learning_rate=.1,\n                    num_leaves=31,\n                    categorical_columns=['category'],\n                    id_feature_columns=['category'])\npredicted = murmur.predict(20)\n```\n## Fitting Quantiles\nTo fit quantiles pass `quantile` for `objective` and the desired quantile percentage to `alpha`.\n```\nmurmur = Murmur(floor=0)\nfitted = murmur.fit(train_df,\n                    target_column='History',\n                    id_column='ID',\n                    date_column='Datetime',\n                    freq='W',\n                    n_basis=[10],\n                    ar=[1,2,3,4],\n                    seasonal_period=[4,52],\n                    num_iterations=100,\n                    learning_rate=.1,\n                    num_leaves=31,\n                    objective='quantile',\n                    alpha=.9)\npredicted = murmur.predict(20)\n```\n\n## Explanations with Shapley\n\n```\n#get shapley values of predictions\npredicted_shap_vals = murmur.explain_predictions(predicted)\nfitted_shap_vals = murmur.explain_fitted(fitted)\n#plot using shapley values\nmurmur.plot_explanations(fitted_shap_vals=fitted_shap_vals,\n                         predicted_shap_vals=predicted_shap_vals,\n                         murmur_id=0)\n```\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Time series forecasting at scale with LightGBM",
    "version": "0.1.3",
    "project_urls": null,
    "split_keywords": [
        "forecasting",
        "time series",
        "lightgbm"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "585e19d32e5b2a777660e01b4228915e2b0abb79b733cde9d413f6b2846c931a",
                "md5": "fd2e130fc0e255a8b718c4ab9a266cfc",
                "sha256": "6b4ab4872f2c06469d27acd9b58248e341da4caad04ccd25a2594f0e909773eb"
            },
            "downloads": -1,
            "filename": "TimeMurmur-0.1.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fd2e130fc0e255a8b718c4ab9a266cfc",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 27628,
            "upload_time": "2023-12-04T15:52:59",
            "upload_time_iso_8601": "2023-12-04T15:52:59.270763Z",
            "url": "https://files.pythonhosted.org/packages/58/5e/19d32e5b2a777660e01b4228915e2b0abb79b733cde9d413f6b2846c931a/TimeMurmur-0.1.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-04 15:52:59",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "timemurmur"
}
        
Elapsed time: 0.17707s